Contents

<table>
<thead>
<tr>
<th>Appendix D</th>
<th>VHDL Summary</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Basic Language Elements</td>
<td>2</td>
</tr>
<tr>
<td>D.1.1</td>
<td>Comments</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2</td>
<td>Identifiers</td>
<td>2</td>
</tr>
<tr>
<td>D.1.3</td>
<td>Data Objects</td>
<td>2</td>
</tr>
<tr>
<td>D.1.4</td>
<td>Data Types</td>
<td>2</td>
</tr>
<tr>
<td>D.1.5</td>
<td>Data Operators</td>
<td>5</td>
</tr>
<tr>
<td>D.1.6</td>
<td>ENTITY</td>
<td>6</td>
</tr>
<tr>
<td>D.1.7</td>
<td>ARCHITECTURE</td>
<td>6</td>
</tr>
<tr>
<td>D.1.8</td>
<td>GENERIC</td>
<td>7</td>
</tr>
<tr>
<td>D.1.9</td>
<td>PACKAGE</td>
<td>9</td>
</tr>
<tr>
<td>D.2</td>
<td>Dataflow Model—Concurrent Statements</td>
<td>10</td>
</tr>
<tr>
<td>D.2.1</td>
<td>Concurrent Signal Assignment</td>
<td>10</td>
</tr>
<tr>
<td>D.2.2</td>
<td>Conditional Signal Assignment</td>
<td>10</td>
</tr>
<tr>
<td>D.2.3</td>
<td>Selected Signal Assignment</td>
<td>11</td>
</tr>
<tr>
<td>D.2.4</td>
<td>Dataflow Model Sample</td>
<td>11</td>
</tr>
<tr>
<td>D.3</td>
<td>Behavioral Model—Sequential Statements</td>
<td>12</td>
</tr>
<tr>
<td>D.3.1</td>
<td>PROCESS</td>
<td>12</td>
</tr>
<tr>
<td>D.3.2</td>
<td>Sequential Signal Assignment</td>
<td>12</td>
</tr>
<tr>
<td>D.3.3</td>
<td>Variable Assignment</td>
<td>12</td>
</tr>
<tr>
<td>D.3.4</td>
<td>WAIT</td>
<td>13</td>
</tr>
<tr>
<td>D.3.5</td>
<td>IF-THEN-ELSE</td>
<td>13</td>
</tr>
<tr>
<td>D.3.6</td>
<td>CASE</td>
<td>13</td>
</tr>
<tr>
<td>D.3.7</td>
<td>NULL</td>
<td>14</td>
</tr>
<tr>
<td>D.3.8</td>
<td>FOR</td>
<td>14</td>
</tr>
<tr>
<td>D.3.9</td>
<td>WHILE</td>
<td>14</td>
</tr>
<tr>
<td>D.3.10</td>
<td>LOOP</td>
<td>15</td>
</tr>
<tr>
<td>D.3.11</td>
<td>EXIT</td>
<td>15</td>
</tr>
<tr>
<td>D.3.12</td>
<td>NEXT</td>
<td>15</td>
</tr>
<tr>
<td>D.3.13</td>
<td>FUNCTION</td>
<td>15</td>
</tr>
<tr>
<td>D.3.14</td>
<td>PROCEDURE</td>
<td>16</td>
</tr>
<tr>
<td>D.3.15</td>
<td>Behavioral Model Sample</td>
<td>17</td>
</tr>
<tr>
<td>D.4</td>
<td>Structural Model—Concurrent Statements</td>
<td>17</td>
</tr>
<tr>
<td>D.4.1</td>
<td>COMPONENT Declaration</td>
<td>18</td>
</tr>
<tr>
<td>D.4.2</td>
<td>PORT MAP</td>
<td>18</td>
</tr>
<tr>
<td>D.4.3</td>
<td>OPEN</td>
<td>19</td>
</tr>
<tr>
<td>D.4.4</td>
<td>GENERATE</td>
<td>19</td>
</tr>
<tr>
<td>D.4.5</td>
<td>Structural Model Sample</td>
<td>19</td>
</tr>
<tr>
<td>D.5</td>
<td>Conversion Routines</td>
<td>21</td>
</tr>
<tr>
<td>D.5.1</td>
<td>CONV_INTEGER()</td>
<td>21</td>
</tr>
<tr>
<td>D.5.2</td>
<td>CONV_STD_LOGIC_VECTOR()</td>
<td>21</td>
</tr>
</tbody>
</table>

Index | 22 |
Appendix D VHDL Summary

VHDL is a hardware description language for modeling digital circuits that can range from the simple connection of gates to complex systems. VHDL is an acronym for VHSIC Hardware Description Language, and VHSIC in turn is an acronym for Very High Speed Integrated Circuits. This appendix gives a brief summary of the basic VHDL elements and its syntax. Many advanced features of the language are omitted. Interested readers should refer to other references for detailed coverage.

D.1 Basic Language Elements

D.1.1 Comments

Comments are preceded by two consecutive hyphens (--) and are terminated at the end of the line.

Example:

```
-- This is a comment
```

D.1.2 Identifiers

VHDL identifier syntax:

- A sequence of one or more uppercase letters, lowercase letters, digits, and the underscore
- Upper and lowercase letters are treated the same (i.e., case insensitive)
- The first character must be a letter
- The last character cannot be the underscore
- Two underscores cannot be together

D.1.3 Data Objects

There are three kinds of data objects: signals, variables, and constants.

- The data object SIGNAL represents logic signals on a wire in the circuit. A signal does not have memory; thus, if the source of the signal is removed, the signal will not have a value.
- A VARIABLE object remembers its content and is used for computations in a behavioral model.
- A CONSTANT object must be initialized with a value when declared, and this value cannot be changed.

Example:

```
SIGNAL x: BIT;
VARIABLE y: INTEGER;
CONSTANT one: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0001";
```

D.1.4 Data Types

BIT and BIT_VECTOR

The BIT and BIT_VECTOR types are predefined in VHDL. Objects of these types can have the values 0 or 1. The BIT_VECTOR type is simply a vector of type BIT. A vector with all bits having the same value can be obtained using the OTHERS keyword.

Example:
SIGNAL x: BIT;
SIGNAL y: BIT_VECTOR(7 DOWNTO 0);

x <= '1';
y <= "00000010";
y <= (OTHERS => '0'); -- same as "00000000"

STD_LOGIC and STD_LOGIC_VECTOR

The STD_LOGIC and STD_LOGIC_VECTOR types provide more values than the BIT type for modeling a real circuit more accurately. Objects of these types can have the following values.

'0' − normal 0
'1' − normal 1
'Z' − high impedance1
'-' − don’t-care2
'L' − weak 02
'H' − weak 12
'U' − uninitialized2
'X' − unknown1
'W' − weak unknown2

The STD_LOGIC and STD_LOGIC_VECTOR types are not predefined, and so the following two library statements must be included in order to use these types.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
```

If objects of type STD_LOGIC_VECTOR are to be used as binary numbers in arithmetic manipulations, then either one of the following two USE statements must also be included

```
USE IEEE.STD_LOGIC_SIGNED.ALL;
```
for signed number arithmetic, or

```
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
```
for unsigned number arithmetic. A vector with all bits having the same value can be obtained using the OTHERS keyword, as shown in the next example.

Example:

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

SIGNAL x: STD_LOGIC;
SIGNAL y: STD_LOGIC_VECTOR(7 DOWNTO 0);

x <= 'Z';
y <= "0000001Z";
y <= (OTHERS => '0'); -- same as "00000000"
```

1 Must use uppercase. This is only a MAX+plus II restriction.
2 MAX+plus II only supports the values 0, 1, Z, and X.
INTEGER

The predefined INTEGER type defines binary number objects for use with arithmetic operators. By default, an INTEGER signal uses 32 bits to represent a signed number. Integers using fewer bits can also be declared with the RANGE keyword.

Example:

```vhdl
SIGNAL x: INTEGER;
SIGNAL y: INTEGER RANGE -64 to 64;
```

BOOLEAN

The predefined BOOLEAN type defines objects having the two values TRUE and FALSE.

Example:

```vhdl
SIGNAL x: BOOLEAN;
```

Enumeration TYPE

An enumeration type allows the user to specify the values that the data object can have.

Syntax:

```
TYPE identifier IS (value1, value2, …);
```

Example:

```vhdl
TYPE state_type IS (S1, S2, S3);
SIGNAL state: state_type;
state <= S1;
```

ARRAY

The ARRAY type groups single data objects of the same type together into a one-dimensional or multi-dimensional array.

Syntax:

```
TYPE identifier IS ARRAY (range) OF type;
```

Example:

```vhdl
TYPE byte IS ARRAY(7 DOWNTO 0) OF BIT;
TYPE memory_type IS ARRAY(1 TO 128) OF byte;
SIGNAL memory: memory_type;
memory(3) <= "00101101";
```

SUBTYPE

A SUBTYPE is a subset of a type, that is, a type with a range constraint.

Syntax:

```
SUBTYPE identifier IS type RANGE range;
```

Example:

```vhdl
SUBTYPE integer4 IS INTEGER RANGE -8 TO 7;
```
Some standard subtypes include:

- **NATURAL**—an integer in the range 0 to INTEGER'HIGH
- **POSITIVE**—an integer in the range 1 to INTEGER'HIGH

D.1.5 Data Operators

The VHDL built-in operators are listed in Figure D.1.

<table>
<thead>
<tr>
<th>Logical Operators</th>
<th>Operation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>AND</td>
<td>(n <= a \ AND \ b)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>(n <= a \ OR \ b)</td>
</tr>
<tr>
<td>NOT</td>
<td>NOT</td>
<td>(n <= \text{NOT} \ a)</td>
</tr>
<tr>
<td>NAND</td>
<td>NAND</td>
<td>(n <= a \ NAND \ b)</td>
</tr>
<tr>
<td>NOR</td>
<td>NOR</td>
<td>(n <= a \ NOR \ b)</td>
</tr>
<tr>
<td>XOR</td>
<td>XOR</td>
<td>(n <= a \ XOR \ b)</td>
</tr>
<tr>
<td>XNOR</td>
<td>XNOR</td>
<td>(n <= a \ XNOR \ b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arithmetic Operators</th>
<th>Operation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
<td>(n <= a + b)</td>
</tr>
<tr>
<td>−</td>
<td>Subtraction</td>
<td>(n <= a - b)</td>
</tr>
<tr>
<td>∗</td>
<td>Multiplication (integer or floating point)</td>
<td>(n <= a \ast \ b)</td>
</tr>
<tr>
<td>/</td>
<td>Division (integer or floating point)</td>
<td>(n <= a / b)</td>
</tr>
<tr>
<td>MOD</td>
<td>Modulus (integer)</td>
<td>(n <= a \ MOD \ b)</td>
</tr>
<tr>
<td>REM</td>
<td>Remainder (integer)</td>
<td>(n <= a \ REM \ b)</td>
</tr>
<tr>
<td>****</td>
<td>Exponentiation</td>
<td>(n <= a \ ** \ 2)</td>
</tr>
<tr>
<td>&</td>
<td>Concatenation</td>
<td>(n <= 'a' \ & \ 'b')</td>
</tr>
<tr>
<td>\textbf{ABS}</td>
<td>Absolute</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relational Operators</th>
<th>Operation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal</td>
<td>IF ((n = 10) THEN</td>
</tr>
<tr>
<td>/=</td>
<td>Not equal</td>
<td>IF ((n /= 10) THEN</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td>IF ((n < 10) THEN</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal</td>
<td>IF ((n <= 10) THEN</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>IF ((n > 10) THEN</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal</td>
<td>IF ((n >= 10) THEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shift Operators</th>
<th>Operation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLL</td>
<td>Shift left logical</td>
<td>(n <= "1001010" \ SLL \ 2)</td>
</tr>
<tr>
<td>SRL</td>
<td>Shift right logical</td>
<td>(n <= "1001010" \ SRL \ 1)</td>
</tr>
<tr>
<td>SLA</td>
<td>Shift left arithmetic</td>
<td>(n <= "1001010" \ SLA \ 2)</td>
</tr>
<tr>
<td>SRA</td>
<td>Shift right arithmetic</td>
<td>(n <= "1001010" \ SRA \ 1)</td>
</tr>
<tr>
<td>ROL</td>
<td>Rotate left</td>
<td>(n <= "1001010" \ ROL \ 2)</td>
</tr>
<tr>
<td>ROR</td>
<td>Rotate right</td>
<td>(n <= "1001010" \ ROR \ 3)</td>
</tr>
</tbody>
</table>

Figure D.1 VHDL built-in data operators.

3 Can only divide by a power of 2. This is only a MAX+plus II restriction.
4 Not supported by MAX+plus II.
D.1.6 ENTITY

An ENTITY declaration declares the external or user interface of the module similar to the declaration of a function. It specifies the name of the entity and its interface. The interface consists of the signals to be passed into the entity or out from it using the two keywords IN and OUT, respectively.

Syntax:

ENTITY entity-name IS
 PORT (list-of-port-names-and-types);
END entity-name;

Example:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Siren IS PORT (
 M: IN STD_LOGIC;
 D: IN STD_LOGIC;
 V: IN STD_LOGIC;
 S: OUT STD_LOGIC);
END Siren;

D.1.7 ARCHITECTURE

The ARCHITECTURE body defines the actual implementation of the functionality of the entity. This is similar to the definition or implementation of a function. The syntax for the architecture varies, depending on the model (dataflow, behavioral, or structural) you use.

Syntax: Dataflow model

ARCHITECTURE architecture-name OF entity-name IS
 signal-declarations;
BEGIN
 concurrent-statements;
END architecture-name;

The concurrent statements are executed concurrently.

Example:

ARCHITECTURE Siren_Dataflow OF Siren IS
 SIGNAL term_1: STD_LOGIC;
BEGIN
 term_1 <= D OR V;
 S <= term_1 AND M;
END Siren_Dataflow;

Syntax: Behavioral model

ARCHITECTURE architecture-name OF entity-name IS
 signal-declarations;
 function-definitions;
 procedure-definitions;
BEGIN
 PROCESS-blocks;
 concurrent-statements;
END architecture-name;

Statements within the PROCESS block are executed sequentially. However, the PROCESS block itself is a concurrent statement.

Example:

```vhdl
ARCHITECTURE Siren_Behavioral OF Siren IS
  SIGNAL term_1: STD_LOGIC;
BEGIN
  PROCESS (D, V, M)
  BEGIN
    term_1 <= D OR V;
    S <= term_1 AND M;
  END PROCESS;
END Siren_Behavioral;
```

Syntax: Structural model

```vhdl
ARCHITECTURE  architecture-name OF entity-name IS
  component-declarations;
  signal-declarations;
BEGIN
  instance-name: PORT MAP-statements;
  concurrent-statements;
END architecture-name;
```

For each component declaration used, there must be a corresponding entity and architecture for that component. The PORT MAP statements are concurrent statements.

Example:

```vhdl
ARCHITECTURE Siren_Structural OF Siren IS
  COMPONENT myOR PORT (  
    in1, in2: IN STD_LOGIC;
    out1: OUT STD_LOGIC);
  END COMPONENT;

  SIGNAL term1: STD_LOGIC;

BEGIN
  U0: myOR PORT MAP (D, V, term1);
  S <= term1 AND M;
END Siren_Structural;
```

D.1.8 GENERIC

Generics allow information to be passed into an entity so that, for example, the size of a vector in the PORT list does not have to be known until elaboration time. Generics of an entity are declared with the GENERIC keyword before the PORT list declaration for the entity. An identifier that is declared as GENERIC is a constant that only can be read. The identifier then can be used in the entity declaration and its corresponding architectures wherever a constant is expected.

Syntax: In an ENTITY declaration

```vhdl
ENTITY entity-name IS
  GENERIC (identifier: type); -- with no default value
  ...
```

or

ENTITY entity-name IS
 GENERIC (identifier: type := constant); -- with a default value given by the constant
...

Example:

ENTITY Adder IS
 -- declares the generic identifier n having a default value 4
 GENERIC (n: INTEGER := 4);
 PORT (
 A, B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 Cout: OUT STD_LOGIC;
 SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
 S: OUT STD_LOGIC);
END Adder;

The value for a generic constant can also be specified in a component declaration or a component instantiation statement.

Syntax: In a component declaration

COMPONENT component-name
 GENERIC (identifier: type := constant); -- with an optional value given by the constant
 PORT (list-of-port-names-and-types);
END COMPONENT;

Syntax: In a component instantiation

label: component-name GENERIC MAP (constant) PORT MAP (association-list);

Example:

ARCHITECTURE ...

COMPONENT mux2 IS
 -- declares the generic identifier n having a default value 4
 GENERIC (n: INTEGER := 4);
 PORT (
 S: IN STD_LOGIC; -- select line
 D1, D0: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);-- data bus input
 Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0)); -- data bus output
END COMPONENT;
...
BEGIN
 U0: mux2 GENERIC MAP (8) PORT MAP (mux_select, A, B, mux_out);
 -- change vector to size 8
 ...

D.1.9 PACKAGE

A PACKAGE provides a mechanism to group together and share declarations that are used by several entity units. A package itself includes a declaration and, optionally, a body. The PACKAGE declaration and body usually are stored together in a separate file from the rest of the design units. The file name given for this file must be the same as the package name. In order for the complete design to synthesize correctly using MAX+plus II, you must first synthesize the package as a separate unit. After that, you can synthesize the unit that uses that package.

PACKAGE Declaration and Body

The PACKAGE declaration contains declarations that may be shared between different entity units. It provides the interface, that is, items that are visible to the other entity units. The optional PACKAGE BODY contains the implementations of the functions and procedures that are declared in the PACKAGE declaration.

Syntax: PACKAGE declaration

```
PACKAGE package-name IS
  type-declarations;
  subtype-declarations;
  signal-declarations;
  variable-declarations;
  constant-declarations;
  component-declarations;
  function-declarations;
  procedure-declarations;
END package-name;
```

Syntax: PACKAGE BODY declaration

```
PACKAGE BODY package-name IS
  function-definitions; -- for functions declared in the package declaration
  procedure-definitions; -- for procedures declared in the package declaration
END package-name;
```

Example:

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE my_package IS
  SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
  FUNCTION Shiftright (input: IN bit4) RETURN bit4; -- declare a function
  SIGNAL mysignal: bit4; -- a global signal
END my_package;

PACKAGE BODY my_package IS
  -- implementation of the Shiftright function
  FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
    BEGIN
      RETURN '0' & input(3 DOWNTO 1);
    END shiftright;
END my_package;
```

Using a PACKAGE

To use a package, you simply include a LIBRARY and USE statement for that package. Before synthesizing the module that uses the package, you need to first synthesize the package by itself as a top-level entity.
Syntax:

```
LIBRARY WORK;
USE WORK.package-name.ALL;
```

Example:

```
LIBRARY WORK;
USE WORK.my_package.ALL;

ENTITY test_package IS PORT (
    x: IN bit4;
    z: OUT bit4);
END test_package;

ARCHITECTURE Behavioral OF test_package IS
BEGIN
    mysignal <= x;
    z <= Shiftright(mysignal);
END Behavioral;
```

D.2 Dataflow Model—Concurrent Statements

Concurrent statements used in the dataflow model are executed concurrently. Hence, the ordering of these statements does not affect the resulting output.

D.2.1 Concurrent Signal Assignment

The concurrent signal assignment statement assigns a value or the result of evaluating an expression to a signal. This statement is executed whenever a signal in its expression changes value. However, the actual assignment of the value to the signal takes place after a certain delay and not instantaneously as for variable assignments. The expression can be any logical or arithmetical expressions.

Syntax:

```
signal <= expression;
```

Example:

```
y <= '1';
z <= y AND (NOT x);
```

A vector with all bits having the same value can be obtained using the OTHERS keyword as shown here.

```
SIGNAL x: STD_LOGIC_VECTOR(7 DOWNTO 0);
x <= (OTHERS => '0');   -- 8-bit vector of 0, same as "00000000"
```

D.2.2 Conditional Signal Assignment

The conditional signal assignment statement selects one of several different values to assign to a signal based on different conditions. This statement is executed whenever a signal in any one of the value or condition changes.

Syntax:

```
signal <= value1 WHEN condition ELSE
         value2 WHEN condition ELSE
         ...
```

Digital Logic and Microprocessor Design with VHDL

Copyright Enoch Hwang
value3;

Example:

```
z <= in0 WHEN sel = "00" ELSE
    in1 WHEN sel = "01" ELSE
    in2 WHEN sel = "10" ELSE
    in3;
```

D.2.3 Selected Signal Assignment

The selected signal assignment statement selects one of several different values to assign to a signal based on the value of a select expression. All possible choices for the expression must be given. The keyword OTHERS can be used to denote all remaining choices. This statement is executed whenever a signal in the expression or any one of the value changes.

Syntax:

```
WITH expression SELECT
    signal <= value1 WHEN choice1,
            value2 WHEN choice2 | choice3,
            ...
            value4 WHEN OTHERS;
```

In the above syntax, if `expression` is equal to `choice1`, then `value1` is assigned to `signal`. Otherwise, if `expression` is equal to `choice2` or `choice3`, then `value2` is assigned to `signal`. If `expression` does not match any of the above choices, then `value4` in the optional `WHEN OTHERS` clause is assigned to `signal`.

Example:

```
WITH sel SELECT
    z <= in0 WHEN "00",
        in1 WHEN "01",
        in2 WHEN "10",
        in3 WHEN OTHERS;
```

D.2.4 Dataflow Model Sample

```-- outputs a 1 if the 4-bit input is a prime number, 0 otherwise```

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Prime IS PORT (
 number: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 yes: OUT STD_LOGIC);
END Prime;

ARCHITECTURE Prime_Dataflow OF Prime IS
BEGIN
 WITH number SELECT
 yes <= '1' WHEN "0001" | "0010",
 '1' WHEN "0011" | "0101" | "0111" | "1011" | "1101",
 '0' WHEN OTHERS;
END Prime_Dataflow;
```
D.3 Behavioral Model—Sequential Statements

The behavioral model allows statements to be executed sequentially just like in a regular computer program. Sequential statements include many of the standard constructs, such as variable assignments, if-then-else statements, and loops.

D.3.1 PROCESS

The PROCESS block contains statements that are executed sequentially. However, the PROCESS statement itself is a concurrent statement. Multiple process blocks in an architecture will be executed simultaneously. These process blocks can be combined together with other concurrent statements.

Syntax:

```vhdl
process-name: PROCESS (sensitivity-list)
 variable-declarations;
BEGIN
 sequential-statements;
END PROCESS process-name;
```

The sensitivity list is a comma-separated list of signals, which the process is sensitive to. In other words, whenever a signal in the list changes value, the process will be executed (i.e., all of the statements in the sequential order listed). After the last statement has been executed, the process will be suspended until the next time that a signal in the sensitivity list changes value before it is executed again.

Example:

```vhdl
Siren: PROCESS (D, V, M)
BEGIN
 term_1 <= D OR V;
 S <= term_1 AND M;
END PROCESS;
```

D.3.2 Sequential Signal Assignment

The sequential signal assignment statement assigns a value to a signal. This statement is just like its concurrent counterpart, except that it is executed sequentially (i.e., only when execution reaches it).

Syntax:

```vhdl
signal <= expression;
```

Example:

```vhdl
y <= '1';
z <= y AND (NOT x);
```

D.3.3 Variable Assignment

The variable assignment statement assigns a value or the result of evaluating an expression to a variable. The value always is assigned to the variable instantaneously whenever this statement is executed.

Variables are only declared within a process block.

Syntax:

```vhdl
signal := expression;
```
Example:

\[
\begin{align*}
y &:= '1'; \\
y_n &:= \text{NOT } y;
\end{align*}
\]

D.3.4 WAIT

When a process has a sensitivity list, the process always suspends after executing the last statement. An alternative to using a sensitivity list to suspend a process is to use a WAIT statement, which must also be the first statement in a process.

Syntax:

\[
\text{WAIT UNTIL condition;}
\]

Example:

\[
\begin{align*}
\text{-- suspend until a rising clock edge} \\
\text{WAIT UNTIL clock'EVENT AND clock = '1';}
\end{align*}
\]

D.3.5 IF-THEN-ELSE

Syntax:

\[
\begin{align*}
\text{IF condition THEN} \\
&\quad \text{sequential-statements1;} \\
\text{ELSE} \\
&\quad \text{sequential-statements2;} \\
\text{END IF;}
\end{align*}
\]

or

\[
\begin{align*}
\text{IF condition1 THEN} \\
&\quad \text{sequential-statements1;} \\
\text{ELSIF condition2 THEN} \\
&\quad \text{sequential-statements2;} \\
\text{\quad \ldots \quad} \\
\text{ELSE} \\
&\quad \text{sequential-statements3;} \\
\text{END IF;}
\end{align*}
\]

Example:

\[
\begin{align*}
\text{IF count /= 10 THEN -- not equal} \\
&\quad \text{count := count + 1;} \\
\text{ELSE} \\
&\quad \text{count := 0;} \\
\text{END IF;}
\end{align*}
\]

D.3.6 CASE

Syntax:

\[5\] This is only a MAX+plus II restriction.
\[6\] There are three different formats of the \text{WAIT} statement, however, MAX+plus II only supports one.
CASE expression IS
WHEN choices => sequential-statements;
WHEN choices => sequential-statements;
...
WHEN OTHERS => sequential-statements;
END CASE;

Example:

```
CASE sel IS
 WHEN "00" => z <= in0;
 WHEN "01" => z <= in1;
 WHEN "10" => z <= in2;
 WHEN OTHERS => z <= in3;
END CASE;
```

### D.3.7 NULL

The NULL statement does not perform any actions.

Syntax:

```
NULL;
```

### D.3.8 FOR

Syntax:

```
FOR identifier IN start [TO | DOWNTO] stop LOOP
 sequential-statements;
END LOOP;
```

Loop statements must have locally static bounds. The identifier is implicitly declared, so no explicit declaration of the variable is needed.

Example:

```
sum := 0;
FOR count IN 1 TO 10 LOOP
 sum := sum + count;
END LOOP;
```

### D.3.9 WHILE

Syntax:

```
WHILE condition LOOP
 sequential-statements;
END LOOP;
```

---

7 This is only a MAX+plus II restriction.
8 Not supported by MAX+ plus II.
D.3.10 LOOP

Syntax:

```
LOOP
 sequential-statements;
 EXIT WHEN condition;
END LOOP;
```

D.3.11 EXIT

The `EXIT` statement can only be used inside a loop. It causes execution to jump out of the innermost loop and is usually used in conjunction with the `LOOP` statement.

Syntax:

```
EXIT WHEN condition;
```

D.3.12 NEXT

The `NEXT` statement can be used only inside a loop. It causes execution to skip to the end of the current iteration and continue with the beginning of the next iteration. It usually is used in conjunction with the `FOR` statement.

Syntax:

```
NEXT WHEN condition;
```

Example:

```
sum := 0;
FOR count IN 1 TO 10 LOOP
 NEXT WHEN count = 3;
 sum := sum + count;
END LOOP;
```

D.3.13 FUNCTION

Syntax: Function declaration

```
FUNCTION function-name (parameter-list) RETURN return-type;
```

Syntax: Function definition

```
FUNCTION function-name (parameter-list) RETURN return-type IS
BEGIN
 sequential-statements;
END function-name;
```

Syntax: Function call

```
function-name (actuals);
```

Parameters in the parameter list can be either signals or variables of mode IN only.

Example:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_function IS PORT (  
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);  
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));  
END test_function;

ARCHITECTURE Behavioral OF test_function IS
  SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
  FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
    RETURN '0' & input(3 DOWNTO 1);
  END shiftright;
  SIGNAL mysignal: bit4;
BEGIN
  PROCESS
    BEGIN
      mysignal <= x;
      z <= Shiftright(mysignal);
    END PROCESS;
  END Behavioral;

D.3.14 PROCEDURE

Syntax: Procedure declaration
  PROCEDURE procedure-name (parameter-list);

Syntax: Procedure definition
  PROCEDURE procedure-name (parameter-list) IS
    BEGIN
      sequential-statements;
    END procedure-name;

Syntax: Procedure call
  procedure-name (actuals);

Parameters in the parameter-list are variables of modes IN, OUT, or INOUT.

Example:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_procedure IS PORT (  
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);  
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));  
END test_procedure;

ARCHITECTURE Behavioral OF test_procedure IS
  SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
PROCEDURE Shiftright (input: IN bit4; output: OUT bit4) IS
BEGIN
  output := '0' & input(3 DOWNTO 1);
END shiftright;

BEGIN
  PROCESS
    VARIABLE mysignal: bit4;
    BEGIN
      Shiftright(x, mysignal);
      z <= mysignal;
    END PROCESS;
  END Behavioral;

D.3.15 Behavioral Model Sample

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT
  (I: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
   Segs: OUT STD_LOGIC_VECTOR(1 TO 7));
END bcd;

ARCHITECTURE Behavioral OF bcd IS
BEGIN
  PROCESS(I)
  BEGIN
    CASE I IS
      WHEN "0000" => Segs <= "1111110";
      WHEN "0001" => Segs <= "0110000";
      WHEN "0010" => Segs <= "1101101";
      WHEN "0011" => Segs <= "1111001";
      WHEN "0100" => Segs <= "0110011";
      WHEN "0101" => Segs <= "1011011";
      WHEN "0110" => Segs <= "1011111";
      WHEN "0111" => Segs <= "1110000";
      WHEN "1000" => Segs <= "1111111";
      WHEN "1001" => Segs <= "1110011";
      WHEN OTHERS => Segs <= "0000000";
    END CASE;
  END PROCESS;
END Behavioral;

D.4 Structural Model—Concurrent Statements

The structural model allows the manual connection of several components together using signals. All components used must first be defined with their respective ENTITY and ARCHITECTURE sections, which can be in the same file or can be in separate files.

In the topmost module, each component used in the netlist is first declared using the COMPONENT statement. The declared components are then instantiated with the actual components in the circuit using the PORT MAP statement. SIGNALS are then used to connect the components together according to the netlist.
D.4.1 COMPONENT Declaration

The COMPONENT declaration statement declares the name and the interface of a component that is used in the circuit description. For each COMPONENT declaration used, there must be a corresponding ENTITY and ARCHITECTURE for that component. The declaration name and the interface must match exactly the name and interface that is specified in the ENTITY section for that component.

Syntax:

```
COMPONENT component-name IS
 PORT (list-of-port-names-and-types);
END COMPONENT;
```

or

```
COMPONENT component-name IS
 GENERIC (identifier: type := constant);
 PORT (list-of-port-names-and-types);
END COMPONENT;
```

Example:

```
COMPONENT half_adder IS PORT (
 xi, yi, cin: IN STD_LOGIC;
 cout, si: OUT STD_LOGIC);
END COMPONENT;
```

D.4.2 PORT MAP

The PORT MAP statement instantiates a declared component with an actual component in the circuit by specifying how the connections to this instance of the component are to be made.

Syntax:

```
label: component-name PORT MAP (association-list);
```

or

```
label: component-name GENERIC MAP (constant) PORT MAP (association-list);
```

The association list can be specified using either the positional or named method.

Example: Positional association

```
SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: half_adder PORT MAP (x0, y0, c0, c1, s0);
U2: half_adder PORT MAP (x1, y1, c1, c2, s1);
```

Example: Named association

```
SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: half_adder PORT MAP (cout=>c1, si=>s0, cin=>c0, xi=>x0, yi=>y0);
U2: half_adder PORT MAP (cin=>c1, xi=>x1, yi=>y1, cout=>c2, si=>s1);
```
D.4.3 OPEN

The OPEN keyword is used in the PORT MAP association list to signify that a particular output port is not connected or used. It cannot be used for an input port.

Example:

```
U1: half_adder PORT MAP (x0, y0, c0, OPEN, s0);
```

D.4.4 GENERATE

The GENERATE statement works like a macro expansion. It provides a simple way to duplicate similar components.

Syntax:

```
label: FOR identifier IN start [TO | DOWNTO] stop GENERATE
 port-map-statements;
END GENERATE label;
```

Example:

```
-- using a FOR-GENERATE statement to generate four instances of the full adder
-- component for a 4-bit adder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Adder4 IS PORT (
 Cin: IN STD_LOGIC;
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 Cout: OUT STD_LOGIC;
 SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END Adder4;

ARCHITECTURE Structural OF Adder4 IS
 COMPONENT FA PORT (
 ci, xi, yi: IN STD_LOGIC;
 co, si: OUT STD_LOGIC);
 END COMPONENT;

 SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN
 Carryv(0) <= Cin;
 Adder: FOR k IN 3 DOWNTO 0 GENERATE
 FullAdder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), SUM(k));
 END GENERATE Adder;
 Cout <= Carryv(4);
END Structural;
```

D.4.5 Structural Model Sample

This example is based on the following circuit:
-- declare and define the 2-input OR gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY myOR IS PORT ( 
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);
END myOR;

ARCHITECTURE OR_Dataflow OF myOR IS
BEGIN
out1 <= in1 OR in2;  -- performs the OR operation
END OR_Dataflow;

-- declare and define the 2-input AND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY myAND IS PORT ( 
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);
END myAND;

ARCHITECTURE AND_Dataflow OF myAND IS
BEGIN
out1 <= in1 AND in2; -- performs the AND operation
END AND_Dataflow;

-- topmost module for the siren
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Siren IS PORT ( 
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);
END Siren;

ARCHITECTURE Siren_Structural OF Siren IS
-- declaration of the needed OR gate
COMPONENT myOR PORT ( 
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);
END COMPONENT;

-- declaration of the needed AND gate
COMPONENT myAND PORT ( 
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);
END COMPONENT;
-- signal for connecting the output of the OR gate
-- with the input to the AND gate
SIGNAL term1: STD_LOGIC;
BEGIN
U0: myOR PORT MAP (D, V, term1);
U1: myAND PORT MAP (term1, M, S);
END Siren_Structural;

D.5 Conversion Routines

D.5.1 CONV_INTEGER()

The CONV_INTEGER() routine converts a STD_LOGIC_VECTOR type to an INTEGER type. Its use requires the inclusion of the following library.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
Syntax:
CONV_INTEGER(std_logic_vector)
Example:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;
n := CONV_INTEGER(four_bit);

D.5.2 CONV_STD_LOGIC_VECTOR( , )

The CONV_STD_LOGIC_VECTOR( , ) routine converts an INTEGER type to a STD_LOGIC_VECTOR type. Its use requires the inclusion of the following library.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_ARITH.ALL;
Syntax:
CONV_STD_LOGIC_VECTOR (integer, number_of_bits)
Example:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_ARITH.ALL;
SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;
four_bit := CONV_STD_LOGIC_VECTOR(n, 4);
Index

A
ARCHITECTURE, 6
ARRAY, 4

B
Behavioral model, 6, 12
element, 17
BIT, 2
BIT_VECTOR, 2
BOOLEAN, 4

C
CASE, 13
Comments, 2
COMPONENT declaration, 18
Concurrent signal assignment, 10
Concurrent statements, 10
Conditional signal assignment, 10
CONSTANT, 2
CONV_INTEGER, 21
CONV_STD_LOGIC_VECTOR, 21
Conversion routines, 21

D
Data objects, 2
Data operators, 5
Data types, 2
Dataflow model, 6, 10
element, 11
DOWNTO, 14

E
ELSIF, 13
ENTITY, 6
Enumeration, 4
EXIT, 15

F
FOR, 14
FUNCTION, 15

G
GENERATE, 19
GENERIC, 7, 18

I
Identifiers, 2
IF THEN ELSE, 13
IN, 6
INTEGER, 4

L
LOOP, 15

N
NEXT, 15
NULL, 14

O
OPEN, 19
OTHERS, 2, 3, 10, 13
OUT, 6

P
PACKAGE, 9
PORT MAP, 18
PROCEDURE, 16
PROCESS, 12

S
Selected signal assignment, 11
Sequential signal assignment, 12
Sequential statements, 12
SIGNAL, 2
Signal assignment
  concurrent, 10
  conditional, 10
  selected, 11
  sequential, 12
STD_LOGIC, 3
STD_LOGIC_VECTOR, 3
Structural model, 7, 17
element, 19
SUBTYPE, 4

T
TO, 14

V
VARIABLE, 2
Variable assignment, 12
VHDL
  Basic language elements, 2
  Behavioral model, 6, 12
    element, 17
  Concurrent statements, 10
  Conversion routines, 21
  Dataflow model, 6, 10
    element, 11
Sequential statements, 12
Structural model, 7, 17
example, 19

**VHDL syntax**
ARCHITECTURE, 6
ARRAY, 4
BIT, 2
BIT_VECTOR, 2
BOOLEAN, 4
CASE, 13
Comments, 2
COMPONENT declaration, 18
CONSTANT, 2
CONV_INTEGER, 21
CONV_STD_LOGIC_VECTOR, 21
Data objects, 2
Data operators, 5
Data types, 2
DOWNTO, 14
ELSIF, 13
ENTITY, 6
Enumeration, 4
EXIT, 15
FOR, 14
FUNCTION, 15
GENERATE, 19
GENERIC, 7, 18
Identifiers, 2
IF THEN ELSE, 13
IN, 6
INTEGER, 4
LOOP, 15
NEXT, 15
NULL, 14
OPEN, 19
OTHERS, 2, 3, 10, 13
OUT, 6
PACKAGE, 9
PORT MAP, 18
PROCEDURE, 16
PROCESS, 12
SIGNAL, 2
Signal assignment
   concurrent, 10
   conditional, 10
   selected, 11
   sequential, 12
STD_LOGIC, 3
STD_LOGIC_VECTOR, 3
SUBTYPE, 4
TO, 14
VARIABLE, 2
Variable assignment, 12
WAIT, 13
WHEN, 13
WHILE, 14
WAIT, 13
WHEN, 13
WHILE, 14