1. The augmented matrix \[
\begin{bmatrix}
1 & 2 & 0 & -3 \\
0 & 1 & -3 & 0 \\
0 & 0 & k & -4
\end{bmatrix}
\] represents a system of equations in the variables \(x, y, z\).

(a) For what values of \(k\) is there no solution?

\textbf{Answer.} \(k = 0\)

(b) For what values of \(k\) is there exactly one solution?

\textbf{Answer.} \(k \neq 0\)

(c) Find the solution to this system of equations if \(k = -2\).

\textbf{Answer.} \(-2z = -4\) implies \(z = 2\). Then \(y - 3z = 0\) implies \(y = 3z = 6\) and \(x + 2y = -3\) implies \(x = -3 - 2y = -3 - 12 = -15\). Thus the solution is\(x = -15, \ y = 6, \ z = 2\).

2. Let \(A = \begin{bmatrix} 2 & -1 & 4 \\ -3 & 1 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 3 & -1 & 1 \\ -2 & 2 & 0 \end{bmatrix}\). Find the following, if possible, if an operation is not possible, state why it is not possible.

(a) \(BC\) (b) \(CB\) (c) \(2A - 2C\)

\textbf{Answer.} (a) \(BC = \begin{bmatrix} -3 & 5 & 1 \\ 8 & -4 & 2 \end{bmatrix}\).

(b) \(CB\) does not exist because the number of columns of \(C\) is not equal to the number of rows of \(B\).

(c) \(2A - 2C = \begin{bmatrix} -2 & 0 & 6 \\ -2 & -2 & 0 \end{bmatrix}\).

3. Consider the following system of equations:
\[
\begin{align*}
x + y + 2z &= 1 \\
2x + 3y + 3z &= -2 \\
3x + 3y + 7z &= 3
\end{align*}
\]

Solve this system using the fact that the inverse of \[
\begin{bmatrix}
1 & 1 & 2 \\
2 & 3 & 3 \\
3 & 3 & 7
\end{bmatrix}
\] is \[
\begin{bmatrix}
12 & -1 & -3 \\
-5 & 1 & 1 \\
-3 & 0 & 1
\end{bmatrix}
\].

\textbf{Answer.} Multiply the inverse of \(A\) by the matrix of constants as follows:
\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix} 12 & -1 & -3 \\
-5 & 1 & 1 \\
-3 & 0 & 1
\end{bmatrix} \begin{bmatrix} 1 \\
-2 \\
3
\end{bmatrix} = \begin{bmatrix} 5 \\
-4 \\
0
\end{bmatrix}
\]

The solution is \((x, y, z) = (5, -4, 0)\).
4. Consider the matrices
\[A = \begin{bmatrix} 12 & -1 & -3 \\ -5 & 1 & 1 \\ -3 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & -0 & -3 & 2 \\ -1 & 3 & 3 & 0 \\ -2 & 4 & -1 & 2 \end{bmatrix} \]

(a) Let \(C = AB \). Determine the dimensions of \(C \), and find \(c_{23} \) (you don’t need to compute the entire product).

Answer. \(C \) has 3 rows and 4 columns.

\[c_{23} = \begin{bmatrix} -5 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 3 \\ -1 \end{bmatrix} = -5(-3) + 1(3) + 1(-1) = 17. \]

(b) Does \(D = BA \) exist? If so, determine the dimensions of \(D \) and find \(d_{31} \).

Answer. This product does not exist since the number of columns of \(B \) is not equal to the number of rows of \(A \).

5. (a) Let \(A \) be a 2 by 3 matrix, how many rows and how many columns must \(B \) have so that \(C = AB \) is a 2 by 8 matrix?

(b) If \(A \) is an \(m \) by \(n \) matrix and \(B \) is an \(n \) by \(p \) matrix, what are the dimensions of the product \(AB \)?

(c) If \(A \) is an \(m \) by \(n \) matrix and \(B \) is a \(r \) by \(s \) matrix. Under what condition(s) will \(AB \) exist? Under what condition(s) will \(BA \) exist?

Answer. (a) \(B \) must be a 3 by 8 matrix.

(b) \(AB \) will be a \(m \) by \(p \) matrix.

(c) \(AB \) will exist if \(n = r \); while \(BA \) will exist if \(s = m \).

6. The augmented matrix
\[\begin{bmatrix} 1 & 2 & 0 & -3 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & -1 & -8 \end{bmatrix} \]
represents a system of equations in the variables \(x, y, z \). Find the solution to this system of equations.

Answer. Perform the operations \(-R_1 + R_2 \rightarrow R_2\) and \(-R_1 + R_3 \rightarrow R_3\), and then switch \(R_2 \) and \(R_3 \) to obtain the matrix
\[\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 3 \end{bmatrix}. \]

Therefore, \(z = 3 \), and \(y = -5 + z = -2 \) and \(x = -3 - 2y = 1 \). Thus the solution is \((1, -2, 3)\).
7. Find the inverse of \(A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -1 \\ -4 & -13 & 2 \end{bmatrix} \) if it exists.

Answer. The inverse is computed as follows

\[
\begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -1 \\ -4 & -13 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]\n
\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -2R_1 + R_2
\]\n
\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow 4R_1 + R_3
\]\n
\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -R_3
\]\n
\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow R_2 + R_3
\]\n
\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -R_3 + R_1
\]\n
\[
\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -R_3 + R_2
\]\n
\[
\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -3R_2 + R_1
\]\n
\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -3R_2 + R_1
\]\n
\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -3R_2 + R_1
\]\n
\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow -3R_2 + R_1
\]\n
\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

Therefore, \(A^{-1} = \begin{bmatrix} -1 & -7 & -4 \\ 0 & 2 & 1 \\ -2 & -1 & -1 \end{bmatrix} \).

8. Consider the sequence whose \(n \)th term is defined by \(a_n = (-1)^{n-1}3(2^n) \). Find \(a_1, a_2, a_3 \) and \(a_9 \).

Answer. \(a_1 = 3(2) = 6, \ a_2 = -3(4) = -12, \ a_3 = 3(8) = 24, \ a_9 = 3(2^9) = 1536. \)

9. Evaluate \(\sum_{k=2}^{5} \frac{(-1)^k}{2^{k+1}} \).

Answer. \(\sum_{k=2}^{5} \frac{(-1)^k}{2^{k+1}} = \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \frac{1}{64} = \frac{8 - 4 + 2 - 1}{64} = \frac{5}{64}. \)

10. Find the term that contains \(y^9 \) in \((2x^2 - y^3)^{11}\)

Answer. Let \(a = 2x^3 \) and \(b = -y^3 \). The term containing \(y^9 \) is the term containing \(b^3 \) which is

\[
\frac{11!}{3!8!}a^8b^3 = \frac{11!}{3!8!}(2x^2)^8(-y^3)^3 = 165(2^8)(x^{16})(-y^9) = -42240x^{16}y^9.
\]
11. Use the binomial theorem to expand \((x^2 - 2y)^6\).

Answer.

\[
(x^2 - 2y)^6 = \binom{6}{0}(x^2)^6(-2y)^0 + \binom{6}{1}(x^2)^5(-2y)^1 + \binom{6}{2}(x^2)^4(-2y)^2 + \binom{6}{3}(x^2)^3(-2y)^3 + \binom{6}{4}(x^2)^2(-2y)^4 + \binom{6}{5}(x^2)^1(-2y)^5 + \binom{6}{6}(x^2)^0(-2y)^6
\]

\[= x^{12} + 6x^{10}(-2y) + 15x^8(4y^2) + 20x^6(-8y^3) + 15x^4(16y^4) + 6x^2(-32y^5) + 64y^6\]

\[= x^{12} - 12x^{10}y + 60x^6y^2 - 160x^6y^3 + 240x^4y^4 - 192x^2y^5 + 64y^6\]

12. Represent \(\frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \frac{64}{729}\) in summation notation.

Answer. \(\sum_{k=3}^{6}(-1)^{k+1}\frac{2^k}{3^k}\).

13. Find the equation of the circle whose graph passes through the points (5, 3), (-1, -5), and (-2, 2). (Hint: use the equation \(x^2 + y^2 + ax + by + c = 0\).)

Answer. (Hint) Plug the points in to get equations: \(5a + 3b + c = -34\), \(-a - 5b + c = -26\), and \(-2a + 2b + c = -8\). Solve by elimination to get \(a = -4\), \(b = 2\) and \(c = -20\). Therefore, the equation of the circle is

\[x^2 + y^2 - 4a + 2b - 20 = 0\]

14. A goldsmith has two gold alloys. The first alloy is 40% gold; the second alloy is 60% gold. How many grams of each should be mixed to produce 20 grams of an alloy that is 52% gold.

Answer. Let \(x\) be the number of grams of 40% alloy and let \(y\) be the number of grams of 60% alloy. Then

\[x + y = 20 \quad \text{and} \quad .4x + .6y = .52(20)\]

Therefore, \(.4(20 - y) + .6y = 10.4\), and so \(.2y = 2.4\) and so \(y = 12\) and \(x = 8\). Thus we need 8 grams of 20% alloy and 12 grams of 60% alloy.

15. Solve the system of equations

\[
\begin{align*}
2x & - y - z = -1 \\
-x & + 3y - z = -3 \\
-5x & + 5y + z = -1
\end{align*}
\]

Answer. Add two times the second equation to the first to get \(5y - 3z = -7\) and subtract 5 times the second equation from the third to get \(-10y + 6z = 14\). These two equations are dependent and imply \(5y - 3z = -7\). Therefore, \(z = c\) where \(c\) is any number, and \(y = \frac{-7+3z}{5} = \frac{3}{5}c - \frac{7}{5}\). Now plug these back into the second equation to get \(x = 3y - z + 3 = \frac{4}{5}c + \frac{6}{5}\).

Therefore, the solution is

\((\frac{4}{5}c - \frac{6}{5}, \frac{3}{5}c - \frac{7}{5}, c)\)