Instructions. Do all problems, and show appropriate work. Do not use a calculator.

1. Use the Rational Zero Theorem to list all possible rational zeros for
 \[P(x) = 5x^4 + 3x^3 - x^2 + 7x - 9 \]. (Do not try to find the zeros)
 \[\pm \frac{1}{5}, \pm 1, \pm 3, \pm 9 \]
 Ani: \[\pm 1, \pm 3, \pm 9, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{9}{5} \]

2. Use Descartes’ Rule of Signs to determine the number of positive real zeros and the number of negative real zeros of \[P(x) = 5x^4 + 3x^3 - x^2 + 7x - 9 \]. (Do not try to find the zeros)
 \[P(x) \text{ has } 3 \text{ or } 1 \text{ positive real zero} \]
 \[P(-x) \text{ has } 1 \text{ negative real zero} \]

3. Find all zeros of \[P(x) = 4x^3 + 3x^2 + x + 3 \] given that \(-3\) is a zero for \(P(x) \).
 \[
 \begin{array}{c|cccc}
 -3 & 4 & 3 & 1 & 3 \\
 \hline
 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]
 \[x^2 + 1 = 0 \Rightarrow x = \pm i \]
 \[P(x) \text{ has zeros } -3, i, -i \]