Name: ________________________________

Instructions. Do each of the following 12 problems. Each problem is worth 5pts. Show all appropriate details in your solutions. No calculators are not allowed on the first 9 problems.

1. (a) Find the midpoint of (3, −2) and (7, −4).

(b) Find the distance between (3, −2) and (7, −4).

2. A circle is centered at (−1, 2) and passes through the point (2, −6). Find the radius of the circle, and then write the equation of the circle.

3. (a) Find \(f(1) \), \(f(5) \) and \(f(7) \) for the piecewise defined function \(f(x) = \begin{cases} \frac{x^3 + 2}{1-x} \quad & \text{if } x < 1; \\ 0 \quad & \text{if } 1 \leq x \leq 5; \\ x - 2 \quad & \text{if } x > 5. \end{cases} \)

(b) Find the domain of \(f(x) = \sqrt{7-x} \) and state your answer in interval form.
4. Find the equation of the line through the points (4, 5) and (7, −1). Write your answer in slope-intercept form.

5. Let $f(x) = ax^2 + bx + c$ be a quadratic where $a \neq 0$.
 (a) If $a > 0$, does the function f have a minimum or a maximum?
 (b) What is the formula for finding the vertex of f?
 (c) What is the range of the function $h(x) = -4(x + 2)^2 - 3$?

6. Use the graph of g to sketch (a) $y = g(x + 3)$ and (b) $y = g(x + 3) - 2$ and (c) $y = g(-x)$.
7. (a) Consider the function \(f(x) = 6 - 2|x| \). Determine whether \(f \) is an even function, odd function or neither.

(b) What are the \(x \)-intercepts of \(y = 6 - 2|x| \)?

(c) What are the \(y \)-intercepts of \(y = 6 - 2|x| \)?

8. Let \(f(x) = \sqrt{x - 4} \) and \(g(x) = -3x \).

(a) What is the domain of \(\frac{f}{g} \)?

(b) Find \((f + g)(5)\), \((f - g)(5)\), \((fg)(5)\) and \((f \circ g)(-5)\).

9. Find the difference quotient \(\frac{f(x+h) - f(x)}{h} \) of \(f(x) = -x^2 + 3x \).
10. A manufacturer produces a product at a cost of $22.80 per unit. The manufacturer has a fixed cost of $400.00 per day. Each unit retails for $37.00. Let x be the number of units produced in a day.

(a) Write the cost C as a function of x.

(b) Write the revenue R as a function of x.

(c) Write the profit P as a function of x (remember: profit = revenue - cost).

11. The number of board-feet of lumber that can be obtained from a log 16 feet long is linearly related to diameter as follows. If the diameter is 16 inches, then 90 board-feet are obtained; if the diameter is 22 inches, then 180 board-feet are obtained.

(a) Use this data to find the formula of a linear function $f(x)$ which gives the number of board-feet of a 16 foot log when x is the diameter in inches of the log.

(b) Use f to determine how many board-feet a log 16 feet long and 2 feet in diameter would produce?

12. A farmer has 1200 feet of fencing to build a rectangular pen that is subdivided into two separate rectangular regions for his pigs and dogs (see sketch below).

(a) Write the length l as a function of the width w.

(b) Write the total area A as a function of w.

(c) Find the dimensions that produce the greatest enclosed area.