Name: Hints or Answers

Instructions. Do each of the following eleven questions. Show all of your work. Do not use a calculator on the first part. Good luck.

1. Use synthetic division to find \((5x^5 + 10x^4 - 5x + 2) \div (x + 2)\).

\[
\begin{array}{c|ccccc}
-2 & 5 & 10 & 0 & 0 & -5 \\
 & & -10 & 0 & 0 & 10 \\
\hline
 & 5 & 0 & 0 & 0 & -5 \\
\end{array}
\]

Ans: \(5x^4 - 5 + \frac{12}{x+2}\)

2. Let \(P(x) = x^{101} - 3x + 2\).

 (a) What is the remainder of \(P(x) \div (x + 1)\)? Is \((x + 1)\) a factor of \(P(x)\)?

 \[R = P(-1) = (-1)^{101} - 3(-1) + 2 = -1 + 3 + 2 = 4\]

 Since \(R \neq 0\), \((x+1)\) is not a factor of \(P(x)\).

 (b) What is the remainder of \(P(x) \div (x - 1)\)? Is \((x - 1)\) a factor of \(P(x)\)?

 \[R = P(1) = (1)^{101} - 3 + 2 = 1 - 3 + 2 = 0\]

 Since \(P(1) = 0\), the factor theorem says \((x-1)\) is a factor of \(P(x)\).

3. Use the Rational Zero Theorem to list all possible rational zeros of \(P(x) = 4x^5 + 11x^2 - 6x - 6\).

 \[\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}\]

4. The length of a rectangular box is 1 inch more than twice the height of the box, and the width is 3 inches more than the height.

 (a) Find a formula for volume \(V(x)\) where \(x\) is height in inches.

 \[l = 2x + 1\]

 \[w = x + 3\]

 \[h = x\]

 \[V(x) = x(x + 3)(2x + 1) = x(2x^2 + 7x + 3) = 2x^3 + 7x^2 + 3x\]

 (b) If the volume of the box is 126 cubic inches, write a polynomial whose zero(s) could be used to help find the height of the box (you do not need to find the zeros of the polynomial).

 Solve \(V(x) = 126\)

 \[2x^3 + 7x^2 + 3x = 126\]

 \[2x^2 + 7x + 3 - 126 = 0\]

 \[x \text{ is a zero of } P(x) = 2x^3 + 7x^2 + 3x - 126\]
5. Let \(P(x) = -3(x+4)^3(x-1)^2(x-3)^2 \). Determine the zeros of \(P(x) \) with their multiplicities. At each zero of \(P(x) \) determine whether the graph of \(y = P(x) \) crosses the \(x \)-axis or merely touches the \(x \)-axis.

<table>
<thead>
<tr>
<th>zero</th>
<th>multiplicity</th>
<th>cross or merely touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>3</td>
<td>crosses, not cross</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>crosses</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>touched, does not cross</td>
</tr>
</tbody>
</table>

6. Given \(P(x) = -3(x+4)^3(x+1)^4(x-3)^2 \) as in the previous question. Determine the degree of \(P \). Determine the far right and far left behavior of \(P \). Using this along with the information you found in the previous question, sketch a rough graph of \(P \).

\[
\text{Deg } P = 9 \\
\text{a}_9 = -3 < 0 \\
\text{up to far left} \\
\text{down to far right}
\]

7. Find all zeros of \(P(x) = x^4 - 4x^3 + 14x^2 - 4x + 13 \) given that \(i \) is a zero of \(P(x) \). Then write \(P(x) \) as a product of its linear factors.

\[
\begin{array}{cccccc}
& 1 & -4 & 14 & -4 & 13 \\
\text{i} & -1 & 4i & 9 + 3 & -3 & 0 \\
-\text{i} & 1 & -4 + i & 9 - 3 & 3 & 0 \\
& 1 & -4 & 13 & 0 \\
\end{array}
\Rightarrow x = 2 \pm 3i
\]

\[
P(x) = (x - i)(x + i)(x - 2 - 3i)(x - 2 + 3i)
\]

8. Use Descartes' Rule of signs to state the number of possible positive and negative real zeros of \(P(x) = 3x^5 - 2x^4 - x^3 + 7x^2 + 12x - 5 \).

\[
P(-x) = -3x^5 - 2x^4 + x^3 + 7x^2 + 12x - 5
\]

3 or 1 positive real zeros
2 or 0 negative real zeros
9. Find the polynomial of degree 3 that has zeros \(3i, 2\) and such that \(P(3) = 36\).

\[
P(x) = a_3 \, (x-2)(x-3i)(x+3i) \\
= a_3 \, (x-2)(x^2 + 9) \\
P(3) = 36 \Rightarrow a_3 \cdot 1 \cdot 12 = 36 \\
\Rightarrow a_3 = 2
\]

\[
P(x) = 2(x-2)(x^2 + 9) \\
= 2(x^3 - 2x^2 + 9x - 18) \\
= 2x^3 - 4x^2 + 18x - 36
\]

10. Given \(G(x) = \frac{x^2 - x}{x + 2}\). Find and write the equations for all horizontal, vertical and slant asymptotes for \(G\). If a certain type of asymptote does not exist, make sure to say so.

i) No horizontal asymptote

ii) \(x = -2\) is vertical asymptote

iii) \[\begin{array}{c|c|c}
-2 & 1 & 0 \\
-1 & 3 & 6 \\
\end{array}\]

\[
y = x - 3 \quad \text{is slant asymptote}
\]

11. For \(G\) as in the previous question. Find the \(x\)-intercepts and \(y\)-intercepts for the graph \(y = G(x)\), complete the following table, and then graph \(y = G(x)\) along with its asymptotes.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2.01</th>
<th>-1.99</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>-10</td>
<td>-12</td>
<td>-605.01</td>
<td>595.01</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

\(x\)-intercept(s): \((0,0), (1,0)\) \[x^2 - x = 0 \Rightarrow x(x-1) = 0 \Rightarrow x = 0, \ x = 1]\n
\(y\)-intercept: \(G(0) = \frac{0}{2} = 0 \Rightarrow (0,0)\) is \(y\)-intercept.