1. First, find \(y_c \) the solution to the complementary equation. For this, \(m^2 + 6m + 8 = 0 \) and so \((m+4)(m+2) = 0\). Therefore, \(m = -4, -2 \) and so \(y_c = c_1 e^{-4t} + c_2 e^{-2t} \). Now the particular solution has the form \(y_p = Ae^{-3t} \). Therefore, \(y'_p = -3Ae^{-3t} \) and \(y'' = 9Ae^{-3t} \). Plugging this back into the differential equation yields:

\[
(9A - 18A + 8A)e^{-3t} = 2e^{-3t}.
\]

Consequently, \(A = -2 \). Thus the general solution to the differential equation is

\[
y = y_c + y_p = c_1 e^{-4t} + c_2 e^{-2t} - 2e^{-3t}.
\]

Finally, to solve the initial valued problem, \(y(0) = 0 \) implies \(c_1 + c_2 - 2 = 0 \) and \(y'(0) = -2 \) implies \(-4c_1 -2c_2 + 6 = -2 \). Solving these yields \(c_1 = 2 \) and \(c_2 = 0 \). Therefore, \(y = 2e^{-4t} - 2e^{-3t} \).

2. (a) This uses the method of undetermined coefficients. Writing the equation in operator form, we get

\[
(D + 2)(D + 4)y = 2t^2 e^{-2t}.
\]

The annihilator of the RHS is \((D + 2)^3\). Therefore,

\[
(D + 2)^3(D + 4)y = 0
\]

and so \(y = c_1 e^{-4t} + c_2 e^{-2t} + c_3 te^{-2t} + c_4 t^2 e^{-2t} + c_5 t^3 e^{-2t} \). The first two terms are from the complementary solution \(y_c \), the remaining terms form \(y_p \), and so \(y_p = Ate^{-2t} + Bt^2 e^{-2t} + Ct^3 e^{-2t} \). The coefficients \(A, B \) and \(C \) can be found by plugging \(y_p \) back into the differential equation, but you were not asked to find them.

(b) \(8\lambda^2 + b\lambda + 2 = 0 \). Therefore,

\[
\lambda = \frac{-b \pm \sqrt{b^2 - 64}}{16}.
\]

The system is overdamped if \(b > 8 \); critically damped if \(b = 8 \), and underdamped if \(0 < b < 8 \). If \(b = 0 \), there is no damping, and \(b < 0 \) doesn’t make sense in the spring system model.

(c) If \(m\lambda^2 + 50 = 0 \), then \(\lambda = \pm i \sqrt{\frac{50}{m}} \). For resonance to occur, we need \(\lambda = \pm 5i \) and so \(m = 2 \). Resonance occurs because the frequency of the forcing function is the same as the natural frequency of the system. For all other values of \(m \), the two frequencies are different, so pure resonance will not occur.

3. (a) The eigenvalues are found by solving

\[
\begin{vmatrix}
-1 - \lambda & 2 \\
-1 & -1 - \lambda
\end{vmatrix} = 0.
\]

Therefore, \(\lambda^2 + 2\lambda + 3 = 0 \) and so

\[
\lambda = \frac{-2 \pm \sqrt{4 - 12}}{2} = -1 \pm i\sqrt{2}.
\]
Because the eigenvalues are complex with negative real part, this forms a spiral sink. The vector field at \((1, 0)\) is the vector \((-1, -1)\). Therefore, the spiral has clockwise rotation. Check this using HPG solver.

4. The eigenvalues are \(\lambda = -1 \pm i\sqrt{2}\) from 3(a). Using \(\lambda = -1 + i\sqrt{2}\) we solve
\[
\begin{bmatrix}
-i\sqrt{2} & 2 \\
-1 & -i\sqrt{2}
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
One such eigenvector is when \(v_1 = 2\) and \(v_2 = i\sqrt{2}\). Thus the complex solution is
\[
Y(t) = \begin{bmatrix} 2 \\ i\sqrt{2} \end{bmatrix} e^{-t} \left[\cos(\sqrt{2}t) + i \sin(\sqrt{2}t) \right] = \begin{bmatrix} 2 \cos(\sqrt{2}t) \\ -\sqrt{2} \sin(\sqrt{2}t) \end{bmatrix} e^{-t} + i \begin{bmatrix} 2 \sin(\sqrt{2}t) \\ \sqrt{2} \cos(\sqrt{2}t) \end{bmatrix} e^{-t}
\]

Therefore, the general (real) solution is
\[
Y(t) = c_1 \begin{bmatrix} 2 \cos(\sqrt{2}t) \\ -\sqrt{2} \sin(\sqrt{2}t) \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \sin(\sqrt{2}t) \\ \sqrt{2} \cos(\sqrt{2}t) \end{bmatrix} e^{-t}
\]

5. (a) Use HPG Solver to help you check your answer.

(b) Now, \((A - \lambda I) = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}\) and so \((A - \lambda I) \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} x_0 - y_0 \\ x_0 - y_0 \end{bmatrix}\). Thus the general solution is
\[
Y(t) = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} e^{-3t} + \begin{bmatrix} x_0 - y_0 \\ x_0 - y_0 \end{bmatrix} te^{-3t}
\]

(c) The solution through the point \((2, 1)\) is obtained by letting \(x = 2\) and \(y = 1\) in the general solution above, that is
\[
Y(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-3t} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} te^{-3t}
\]
In component form, this is
\[
x(t) = 2e^{-3t} + te^{-3t} \quad y(t) = e^{-3t} + te^{-3t}.
\]
As with all other solutions (see your phase portrait from (a)), \((x(t), y(t)) \to (0, 0)\) as \(t \to \infty\).