Instructions. Do each of the following six problems. Please do your best, and show all appropriate details in your solutions. Thank you!

1. (10 pts) (a) Find the general solution to \(\frac{dY}{dt} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} Y \).

(b) Find the solution through the point (2, 3).

2. (a) (3 pts) Write the second-order differential equation for the unforced harmonic oscillator with mass \(m = 2 \), and damping coefficient \(b = 4 \) with unknown spring constant \(k > 0 \).

(b) (3 pts) Determine values for \(k \) for which the oscillator is (i) overdamped; (ii) critically damped; (iii) underdamped.

(c) (4 pts) Write the general solution to the differential equation when \(k = 4 \).
3. (10 pts) Sketch the phase portraits for the following systems of differential equations with the help of the given information about their eigenvalues and/or eigenvectors. Directions are important!

(a) \(\frac{dY}{dt} = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} Y \). Eigenvalues: repeated eigenvalue \(\lambda = 3 \), with eigenvector \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

(b) \(\frac{dY}{dt} = \begin{bmatrix} 0 & -2 \\ 2 & 1 \end{bmatrix} Y \). Eigenvalues: \(\lambda = \frac{1 \pm i \sqrt{15}}{2} \).

(c) \(\frac{dY}{dt} = \begin{bmatrix} 1 & 5 \\ -2 & -1 \end{bmatrix} Y \). Eigenvalues: \(\lambda = \pm 3i \).
4. Let A be a 2 by 2 matrix.

(a) Show that the eigenvalues of A satisfy the equation $\lambda^2 - \lambda T + D = 0$ where T is trace of A and D is the determinant of A.

(b) Use the quadratic formula to determine when (in terms of T and D) that A has: complex eigenvalues, repeated real eigenvalue, distinct real eigenvalues.

5. Consider the differential equation $\frac{d^2y}{dt^2} + 8 \frac{dy}{dt} - 9y = f(t)$

(a) (4 pts) Find y_h, the solution to the associated homogeneous equation.

(b) (2 pts) Determine the form of an appropriate guess for y_p if $f(t) = 4t$.

(c) (2 pts) Determine the form of an appropriate guess for y_p if $f(t) = e^{3t}$.

(d) (2 pts) Suppose $f(t) = e^{kt}$; for what values of k would a “second guess” for the from of y_p be required?
6. Consider the forced undamped harmonic oscillator represented by \(\frac{d^2 y}{dt^2} + 25y = 5 \cos(5t) \).

(a) (2pts) Does this represent an oscillator where pure resonance occurs? Explain.

(b) (8 pts) Find the general solution to the given differential equation.