1. (20 pts) (a) \(\lim_{(x,y) \to (-1,2)} \frac{xy}{x^2 + y} = \frac{(-1)(2)}{(-1)^2 + 2} = -\frac{2}{3}. \)

(b) The domain of \(f(x, y) = \sqrt{x^2 + y^2 - 16} \) is \(\{(x, y) : x^2 + y^2 \geq 16\} \) which all points in the \(xy \)-plane that are on or outside the circle of radius 4 centered at the origin.

(c) Given \(x^2 e^y + xy = 5 \) we let \(F(x, y) = x^2 e^y + xy \). Then \(\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{2xe^y + y}{x^2e^y + x}. \)

(d) The integral \(\int_{\pi/2}^{\pi} \int_{0}^{4} r \, dr \, d\theta \) gives the area of the region in the 2nd quadrant that is enclosed by the circle of radius 4 centered at the origin.

(e) A vector normal to the surface \(x^2 + y^2 - z^2 = 0 \) at the point \((4, -3, 5)\) can be found by using the gradient. That is, \(\nabla G(x, y, z) = (2x, 2y, -2z) \) and so \(G(4, -3, 5) = (8, -6, -10) \) is a normal vector to the surface.

(f) The integral \(\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{5} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \) gives the volume of the solid lies above the cone \(z = \pi/4 \) and inside the sphere \(\rho = 5 \).

(g) If \(h(x, y) \) is the height of a wall at each point \((x, y)\) on a smooth curve \(C \), then the line integral \(\int_{C} h(x, y) \, ds \) represents the surface area of the wall.

(h) A formula for \(ds \) for the curve \(x = y^3 \) is \(ds = \sqrt{9t^4 + 1} \, dt \).

(i) The wall of the cylinder \(x^2 + y^2 = 4 \) where \(-2 \leq z \leq 8\) can be parametrized by \(P(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \) where \(0 \leq \theta \leq 2\pi \) and \(-2 \leq z \leq 8\).

(j) Given a smooth surface \(z = g(x, y) \), a formula for \(\mathbf{N} \, dS \) where \(\mathbf{N} \) is the upward unit normal is \(\langle -g_x, -g_y, 1 \rangle \, dx \, dy \).
2. (a) (5 pts) The centripetal acceleration of a particle moving in a circle is \(a = \frac{v^2}{r} \), where \(v \) is the velocity and \(r \) is the radius of the circle. Use differentials to approximate the maximum percent error in measuring the acceleration due to errors 3% in \(v \) and 2% in \(r \).

Answer. The differential for \(a \) is

\[
\begin{align*}
\frac{da}{dv} \, dv + \frac{da}{dr} \, dr &= \frac{2v}{r} \, dv - \frac{v^2}{r^2} \, dr \\
&= \frac{2v}{r} \, (\pm 0.03v) - \frac{v^2}{r^2} \, (\pm 0.02v)
\end{align*}
\]

Thus, with appropriate choices of signs \(da = \pm 0.08 \frac{v^2}{r} \), or \(da = \pm 0.08a \) which is an error of 8%.

(b) (5 pts) Let \(F(x, y, z) = x^2y + e^z + yz \) where \(x = \frac{u}{v^3} \), \(y = 3v - u \) and \(z = e^v \). Find \(\frac{\partial F}{\partial u} \) when \(v = 1 \) and \(u = -2 \).

Answer. Using the chain rule,

\[
\frac{\partial F}{\partial u} = F_x \frac{\partial x}{\partial u} + F_y \frac{\partial y}{\partial u} + F_z \frac{\partial z}{\partial u}
\]

\[
= (2xy) \left(\frac{1}{v^3} \right) + (x^2 + z)(-1) + (e^z + y)(0)
\]

Evaluating this when \(u = -2 \) and \(v = 1 \), we get

\[
\frac{\partial F}{\partial u} = 2 \left(\frac{-2}{1} \right) (5)(1) + ((-2)^2 + e)(-1) = -20 - 4 - e = -24 - e.
\]

3. (a) (5 pts) Find the directional derivative of the function \(f(x, y) = x^2y - 2xy^2 \) in the direction \(\mathbf{v} = -5\mathbf{i} + 12\mathbf{j} \) at the point \((2, 1)\).

Answer. A unit vector in the direction of \(\mathbf{v} \) is \(\mathbf{u} = \left(-\frac{5}{13}, \frac{12}{13} \right) \). Also, \(\nabla f(x, y) = (2xy - 2y^2, x^2 - 4xy) \) and so \(\nabla f(2, 1) = (2, -4) \). Then

\[
D_\mathbf{u} f(2, 1) = (2, -4) \cdot \left(-\frac{5}{13}, \frac{12}{13} \right) = -\frac{58}{13}.
\]

(b) (5 pts) Find all points on the surface \(z = 3x^2 + 2y^2 - 3x + 4y + 12 \) where the tangent plane is horizontal. Write the equations of the tangent planes at those points.

Answer. The tangent plane is horizontal when \(z_x = 0 = z_y \), and so we solve \(z_x = 6x - 3 = 0 \) and \(z_y = 4y + 4 = 0 \). This leads us to the point \((1/2, -1, 37/4) \). Thus the tangent plane is \(z = 37/4 \).
4. (10 pts) Find and classify relative extrema of \(f(x, y) = x^3 - 3xy + y^3 \).

Answer. First we compute the critical points: \(f_x = 3x^2 - 3y = 0 \) and \(f_y = -3x + 3y^2 = 0 \) and so \(y = x^2 \) and \(-3x + 3x^4 = 0 \) which imply \(-3x(1 - x^3) = 0 \) and so \(x = 0, 1 \). Thus the critical points are \((0, 0)\) and \((1, 1)\).

Now, \(f_{xx} = 6x, f_{xy} = -3 \) and \(f_{yy} = 6y \).

At \((0, 0)\), \(D = f_{xx}f_{yy} - f_{xy}^2 = 0 - 3^2 < 0 \), and so there is a saddle point at \((0, 0)\).

At \((1, 1)\), \(D = 6^2 - 3^2 > 0 \), and \(f_{xx} = 6 > 0 \) and so there is a local minimum at \((1, 1)\).

5. (10 pts) Evaluate \(\int_0^1 \int_{3x}^3 e^{-y^2} dy \, dx \) by reversing the order of integration.

Answer. The region of integration is \(0 \leq x \leq 1 \) and \(3x \leq y \leq 3 \) which written in the reversed order becomes \(0 \leq y \leq 3 \) and \(0 \leq x \leq y/3 \). Therefore,

\[
\int_0^1 \int_{3x}^3 e^{-y^2} dy \, dx = \int_0^3 \int_0^{y/3} e^{-y^2} dx \, dy = \int_0^3 \frac{y}{3} e^{-y^2} - \frac{1}{6} e^{-y^2} \bigg|_0^3 = \frac{1}{6} (1 - e^{-9}).
\]

6. (10 pts) Find the mass of a solid with density \(\rho(x, y, z) = x^2 + y^2 \) that is below the plane \(z = 8 \) and above the cone \(z = 2\sqrt{x^2 + y^2} \).

Answer. The mass of the solid is given in cylindrical coordinates by

\[
\int_0^{2\pi} \int_0^4 \int_0^8 r^3 dr \, d\theta \, dz = \int_0^{2\pi} \int_0^4 (8r^3 - 2r^4) d\theta \, dr \, dz = 2\pi \left(2r^4 - \frac{2}{5} r^5 \right) \bigg|_0^4 = 2\pi \frac{512}{5} = \frac{1024\pi}{5}.
\]
7. (10 pts) Sketch the solid whose volume is given by the integral \(\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{6-x-y} dz
 dy
 dx \), and rewrite the integral in the order \(dz
 dx
 dy \) (do not evaluate the integrals).

Answer. The sketch is left to the reader. It is the solid that lies below the plane \(x + y + z = 6 \) and above \(z = 0 \) and it projects onto the \(xy \)-plane as a quarter circle of radius 3 in the first quadrant. In otherwords, it is the solid in the first octant that is below the plane \(x + y + z = 6 \) and inside the cylinder \(x^2 + y^2 = 9 \).

In the new order of integration, the integral is

\[
\int_0^3 \int_0^{\sqrt{9-y^2}} \int_0^{6-x-y} dz
 dy
 dx
\]

8. (a) (5 pts) Find the surface area of a wall whose height is \(h(x, y) = y \) along the top half of the circle \(x^2 + y^2 = 9 \).

Answer. The parametrize the top half of the circle as \(x = 3 \cos t, \ y = 3 \sin t \) where \(0 \leq t \leq 2\pi \) and then \(ds = \sqrt{9 \sin^2 t + 9 \cos^2 t} \ dt = 3 \ dt \). Thus, the area is given by the line integral

\[
\int_0^\pi (3 \sin t)(3 \ dt) = 18.
\]

(b) (5 pts) Evaluate the line integral \(\int_C x \ dy + y \ dx \) where \(C \) is the portion of \(x = y^2 \) that starts at \((4, -2) \) and ends at \((1, 1) \).

Answer. Let \(x = t^2 \) and \(y = t \) where \(-2 \leq t \leq 1\). Thus

\[
\int_C x \ dy + y \ dx = \int_{-2}^1 t^2 \ dt + t(2t \ dt) = \int_{-2}^1 3t^2 \ dt = t^3 \bigg|_{-2}^1 = 9.
\]
9. Let \(S \) be the portion of the plane \(2x + 3y + 2z = 12 \) that is inside the cylinder \(x^2 + y^2 = 16 \), and let \(\mathbf{F}(x, y, z) = 2y\mathbf{i} - 2x\mathbf{j} + z\mathbf{k} \).

(a) (5 pts) Set-up but do not evaluate the integral to find the flux of the vector field \(\mathbf{F} \) through the surface \(S \) oriented with upward unit normal.

Answer. \(N\mathbf{d}S = \langle 1, \frac{3}{2}, 1 \rangle dA \) and so we get the flux integral as

\[
\int \int_S \langle 2y, -2x, z \rangle \cdot \langle 1, 3/2, 1 \rangle \, dA = \int \int_R (2y - 3x + 6 - x - 3y/2) \, dA
\]
\[
= \int_0^{2\pi} \int_0^4 (6 - 4r \cos \theta + \frac{1}{2} r \sin \theta) \, r \, dr \, d\theta.
\]

(b) (5 pts) Let \(C \) be the boundary of the surface \(S \) as above, oriented in a counter-clockwise direction. Use Stokes’ theorem to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

Answer. Compute that \(\text{curl} \mathbf{F} = \langle 0, 0, -4 \rangle \), and \(|\mathbf{b}f N\mathbf{d}S = \langle 1, 3/2, 1 \rangle \, dA \) as above. Now

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int \int_S \text{curl} \mathbf{F} \cdot N \, dS = \int \int_R -4 \, dA = (-4)(16\pi) = -64\pi.
\]

10. (10 pts) Let \(S \) be the surface of the sphere \(x^2 + y^2 + z^2 = 9 \) oriented with outward unit normal. Let \(\mathbf{F}(x, y, z) = (2x + y\cos z)\mathbf{i} + (y - z)\mathbf{j} + (2z - 3xe^{xy})\mathbf{k} \).

(a) Find the flux of \(\mathbf{F} \) through the closed surface \(S \).

Answer. We’ll use the divergence theorem. First, \(\text{div} \mathbf{F} = 2 + 1 + 2 = 5 \) and let \(Q \) denote the ball of radius 3 enclosed by \(S \). Now

\[
\int \int \mathbf{F} \cdot N\mathbf{d}S = \int \int \int_Q 5\, dV = 5(\text{vol}Q) = 5 \cdot \frac{4}{3}\pi 3^3 = 180\pi.
\]

(b) Evaluate the integral \(\int \int_S \text{curl} \mathbf{F} \cdot N\mathbf{d}S \).

Answer. In general, \(\text{div}(\text{curl} \mathbf{F}) = 0 \) when \(\mathbf{F} \) has continuous 2nd partial derivatives, thus the divergence theorem says

\[
\int \int_S \text{curl} \mathbf{F} \cdot N\mathbf{d}S = \int \int \int_Q 0\, dV = 0.
\]