Instructions. Do question 1 and any four of questions 2 through 6. Please justify all answers.

1. (a) (2 pts) Define what is meant by a conservative vector field \(\mathbf{F} \).

(b) (3 pts) Given a vector field \(\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k} \) write the formulas for \(\text{div}\mathbf{F} \) and \(\text{curl}\mathbf{F} \).

(c) (2 pts) If \(\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \) where \(C \) is a closed, simple, piecewise smooth curve, is \(\mathbf{F} \) conservative? Explain.

(d) (4 pts) Sketch some representative vectors for the vector field \(\mathbf{F}(x, y) = -yi + xj \).

(e) (2 pts) Explain in words how the sketch of the vector field \(\mathbf{G}(x, y) = yi - xj \) compares to that in (d).

(f) (2 pts) With the help of Green’s theorem write a formula \(\int_C M\,dx + N\,dy \) when \(C \) is a simple piecewise smooth curve enclosing a region \(R \) and \(C \) is oriented in a clockwise direction, and assume \(M \) and \(N \) have continuous partial derivatives.

2. (10 pts) A retaining wall has its base along the curve \(y^3 = x \) starting at \((-8, -2)\) and ending at \((1, 1)\). The height of the wall is \(h(x, y) = x^2y^2 \). Completely set-up (but do not evaluate) a line integral to find the surface area of the retaining wall.

3. (10 pts) Find the work done by the force field \(\mathbf{F}(x, y, z) = -\frac{1}{2}xi - \frac{1}{2}yj + \frac{1}{4}k \) on a particle as it moves along the helix given by \(\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + tk \) from the point \((1, 0, 0)\) to \((-1, 0, 3\pi)\).

4. (10 pts) Tom computed that the integral \(\int_C y^2\,dx \) is 0 where \(C \) is the unit circle oriented in a counter clockwise direction. He then concluded that \(\mathbf{F}(x, y) = y^2\mathbf{i} \) is a conservative vector field because it is path independent. Is Tom correct? Explain. (Address both the value of the line integral, and his reasoning about \(\mathbf{F} \) being conservative).

5. (10 pts) (a) Use Green’s theorem to show that the area of a plane region \(R \) bounded by a piecewise smooth simple closed curve \(C \), oriented counter clockwise, is given by \(A = \frac{1}{2} \int_C x\,dy - y\,dx \).

(b) Use the formula in (a) to find the area of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

6. (10 pts) Verify that the vector field \(\mathbf{F}(x, y) = (2xy + 1)\mathbf{i} + (x^2 + ye^y \cos y)\mathbf{j} \), is conservative, and then evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(C \) is the path consisting of line segments from \((0, 0)\) to \((1, 1)\) and then from \((1, 1)\) to \((4, 10)\) and then from \((4, 10)\) to \((5, 0)\).