Name: ____________________________

Hints and Answers

Instructions. Do question 1 and any four of questions 2 through 6. Please justify all answers and do not use a calculator.

1. (10 pts) (a) Sketch the region of integration for \(\int_{-2}^{0} \int_{-y}^{y+4} f(x, y) \, dx \, dy \).

Answer. The region is a triangle with vertices \((0, 0)\), \((2, -2)\) and \((4, 0)\).

(b) Use geometry to determine value of integral \(\int_{-2}^{0} \int_{-y}^{y+4} 1 \, dx \, dy \). (Same limits as (a))

Answer. The triangle in (a) has base 4 and height 2, thus its area, which is the value of the integral requested, is 4.

(c) The triple integral in spherical coordinates \(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{2}^{5} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \) represents the volume of a solid. Describe the solid.

Answer. The solid that is outside a sphere of radius 2 centered at the origin and inside the sphere of radius 5 centered at the origin.

(d) Set-up but do not evaluate an integral in cylindrical coordinates to find the volume of a right circular cylinder of height 5 and radius 2.

Answer. \(V = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{5} r \, dz \, dr \, d\theta \).

(e) Let \(x = 2u - v \) and \(y = 3u + v \). Find \(\frac{\partial(x, y)}{\partial(u, v)} \).

Answer. \(\frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = (2)(1) - (3)(-1) = 5 \).
2. (10 pts) Evaluate the integral \(\int_0^1 \int_y^1 \sin(x^2) \, dx \, dy \) by reversing the order of integration.

Answer. Sketch the region as needed to help make the switch:

\[
\int_0^1 \int_y^1 \sin(x^2) \, dx \, dy = \int_0^1 \int_0^x \sin(x^2) \, dy \, dx
\]

\[
= \int_0^1 x \sin(x^2) \, dx \quad u = x^2, \quad du = 2x \, dx
\]

\[
= \frac{1}{2} \int_0^1 \sin u \, du = -\frac{1}{2} \cos u \bigg|_0^1
\]

\[
= \frac{1 - \cos(1)}{2}.
\]

3. (10 pts) Consider the planar lamina bounded by \(x = 16 - y^2 \) and \(x = 0 \) whose density is given by \(\rho = kx \). (a) Sketch the lamina, then set-up but do not evaluate the integrals to find: (b) the mass \(M \), (c) the moment \(M_x \), and (d) the moment \(M_y \).

(a) The sketch is left to the reader.

(b) \(M = \int_{-4}^4 \int_0^{16-y^2} kx \, dx \, dy. \)

(c) \(M_x = \int_{-4}^4 \int_0^{16-y^2} kxy \, dx \, dy. \)

(d) \(M_y = \int_{-4}^4 \int_0^{16-y^2} kx^2 \, dx \, dy. \)
4. (10 pts) Find the surface area of the portion of the graph \(z = 9 + x^2 - y^2 \) that lies above the region \(R = \{(x, y) : 1 \leq x^2 + y^2 \leq 4\} \).

Answer. The surface area formula is

\[
\int \int_R \sqrt{1 + (f_x)^2 + (f_y)^2} \, dA.
\]

Therefore,

\[
\text{Surface area} = \int \int_R \sqrt{1 + (2x)^2 + (-2y)^2} \, dA
\]

\[
= \int_0^{2\pi} \int_1^2 \sqrt{1 + 4r^2} \, r \, dr \, d\theta \quad u = 1 + 4r^2, \ du = 8r \, dr
\]

\[
= \int_0^{2\pi} \left[\frac{1}{3} \cdot \frac{2}{3} u^{3/2} \right]_1^5 \, d\theta
\]

\[
= 2\pi \cdot \frac{1}{8} \cdot \frac{2}{3} [17^{3/2} - 5^{3/2}] = \frac{\pi}{6} [17^{3/2} - 5^{3/2}].
\]

5. (10 pts) Evaluate \(\int \int_R (x - y)\sqrt{(x + y)} \, dA \) where \(R \) is the parallelogram with vertices \((0, 0), (-1, 1), (2, 4)\) and \((3, 3)\). by using the change of variables \(u = x - y \) and \(v = x + y \).

Answer. The region \(R \) is a parallelogram with sides \(x + y = 0, x + y = 6, x - y = -2 \) and \(x - y = 0 \). Thus with the transformation \(u = x - y \) and \(v = x + y \) the region \(S \) in the \(uv \)-plane is \(S = \{(u, v) : -2 \leq u \leq 0, 0 \leq v \leq 6 \} \). Solving \(u = x - y \) and \(v = x + y \) for \(x \) and \(y \) (add and subtract equations respectively) results in

\[
x = \frac{1}{2} u + \frac{1}{2} v \quad \text{and} \quad y = -\frac{1}{2} u + \frac{1}{2} v.
\]

The Jacobian is then

\[
\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = 1.
\]

Using the change of variable formula one obtains

\[
\int \int_R (x - y)\sqrt{(x + y)} \, dA = \int_0^6 \int_{-2}^0 u^{1/2} \frac{1}{2} \, du \, dv = \int_0^6 \frac{u^2}{4} v^{1/2} \bigg|_{u=-2}^{u=0} \, dv = \int_0^6 -v^{1/2} \, dv
\]

\[
= -\frac{2}{3} v^{3/2} \bigg|_0^6 = -\frac{2}{3} \cdot 6^{3/2} = -4\sqrt{6}.
\]
6. (a) (5 pts) Evaluate the integral \(\int_{-2}^{0} \int_{0}^{\sqrt{4-z^2}} \int_{0}^{5} x \, dz \, dy \, dx \); use any method you wish.

Answer. My preferred method is cylindrical coordinates, or to evaluate directly for the first step, and then switch to polar. Notice that the region of integration projected on the xy-plane is the portion enclosed by a circle of radius 2 centered at the origin that lies in the 2nd quadrant. Hence the limits on \(\theta \) are \(\pi/2 \leq \theta \leq \pi \) and the limits for \(r \) are \(0 \leq r \leq 2 \).

\[
\int_{-2}^{0} \int_{0}^{\sqrt{4-z^2}} \int_{0}^{5} x \, dz \, dy \, dx = \int_{\pi/2}^{\pi} \int_{0}^{2} \int_{0}^{5} r \cos \theta \, r \, dr \, d\theta \, dz = \int_{\pi/2}^{\pi} \int_{0}^{2} r^2 \cos \theta \, r \, dr \, d\theta = \int_{\pi/2}^{\pi} 5r^3 \cos \theta \, d\theta = \int_{\pi/2}^{\pi} \frac{40}{3} \cos \theta \, d\theta = \frac{40}{3} \sin \theta \bigg|_{\pi/2}^{\pi} = \frac{40}{3} (0 - 1) = -\frac{40}{3}.
\]

(b) (5 pts) Rewrite the integral \(\int_{0}^{1} \int_{0}^{1-y^2} \int_{0}^{1-y} xyz \, dz \, dx \, dy \) using the order \(dx \, dy \, dz \). Do not evaluate the integral.

Answer. Sketch the region of integration (see #31 from Section 14.7 in the text). Then notice the region of integration is

\[
0 \leq z \leq 1, \quad 0 \leq y \leq 1 - z \quad 0 \leq x \leq 1 - y^2.
\]

Therefore,

\[
\int_{0}^{1} \int_{0}^{1-y^2} \int_{0}^{1-y} xyz \, dz \, dx \, dy = \int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y^2} xyz \, dx \, dy \, dz
\]

Promised Formula. \(\int \int_{R} f(x, y) \, dx \, dy = \int \int_{S} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv. \)