Instructions: Do all five of the following problems. Please do your best, and show all appropriate details in your solutions.

1. Suppose $f : A \rightarrow B$ is a function.
 (a) Define what is meant by the pre-image $f^*(V)$.
 (b) Define what is meant by the image $f_*(U)$.
 (c) For a collection of subsets $\{V_j\}_{j \in J}$ of B, prove that $f^* \bigcap_{j \in J} V_j = \bigcap_{j \in J} f^*(V_j)$.
 (d) Is it true that $f_*(U_1 \cap U_2) = f_*(U_1) \cap f_*(U_2)$? Prove or provide a counterexample.

2. (a) Define the terms injection, surjection and bijection.
 (b) Suppose that both $f : A \rightarrow C$ and $g : B \rightarrow D$ are bijections. Show that the function $h : A \times B \rightarrow C \times D$ defined by $h(a, b) = (f(a), g(b))$ is a bijection.
 (c) Find the inverse function of $f : (-\infty, 0] \rightarrow [1, \infty)$ of $f(x) = x^2 + 1$. Be sure to state the domain and range of the inverse function, and to verify it is the inverse function of f.

3. (a) Define what is meant by an equivalence relation on a set A.
 (b) Define the relation \sim on \mathbb{R}^2 by $(a, b) \sim (c, d)$ iff $a^2 + b^2 = c^2 + d^2$. Is \sim an equivalence relation? Verify your assertion.
 (c) Do the relation classes from the relation in (b) form a partition of \mathbb{R}^2? If not, explain which properties of a partition are violated. If so, describe the partition, and explain why it is a partition.

4. (a) Find a bijection from the set $S = \{1, 4, 9, 16, 25, \ldots\}$ of all squares of natural numbers onto \mathbb{Z}.
 (b) Find a bijection from $(0, 1) \rightarrow (a, b)$ where $a < b$.
 (c) Explain carefully why the irrational numbers in any interval (a, b) with $a < b$ are uncountable.

5. (a) Draw a lattice diagram for $(\mathcal{P}(A), \subseteq)$ where $A = \{a, b, c, d\}$.
 (b) Explain why $(\mathcal{P}(A), \subseteq)$ is not a totally ordered set.
 (c) Let (S, \leq) be a partially ordered set. What properties must \leq have? Be specific.
 (d) Let (S, \leq) be any partially ordered set. Prove that if S has a greatest element, then it is unique.