Math 121, Chapter 2 Practice Problems
Hints and Answers

1. (a) Find the distance between the points \((-3, 2)\) and \((9, -3)\).

Answer. \[d = \sqrt{(9 - (-3))^2 + (-3 - 2)^2} = \sqrt{144 + 25} = 13.\]

(b) find the midpoint of the line segment with endpoints \((3, 5)\) and \((-5, 2)\).

Answer. \[\left(\frac{3 + (-5)}{2}, \frac{5 + 2}{2}\right) = \left(-1, \frac{7}{2}\right).\]

2. (a) Determine the center and radius of the circle whose equation is \(x^2 + y^2 + 10x + 4y + 20 = 0\).

Answer. Complete the squares:

\[
x^2 + 10x + 25 + y^2 + 4y + 4 = -20 + 25 + 4 \\
(x + 5)^2 + (y + 2)^2 = 9
\]

Therefore, the center is \((-5, -2)\) and the radius is \(r = 3\).

(b) Write the equation of a circle whose center is \((-5, 1)\) and passes through the point \((3, 1)\).

Answer. The radius is the distance from \((-5, 1)\) to \((3, 1)\) which is 8. Therefore, the equation is

\[(x + 5)^2 + (y - 1)^2 = 64.\]

(c) Find the equation of a circle that has diametral endpoints of \((0, 0)\) and \((6, 8)\). (Hint: the center is the midpoint of the diametral endpoints).

Answer. The center is at \((3, 4)\), the radius is \(r = \sqrt{(3 - 0)^2 + (4 - 0)^2} = 5\). Thus the equation is \((x - 3)^2 + (y - 4)^2 = 25.\)

3. Let \(f(x) = 2x^2 + 7\) and \(g(x) = |x - 1|\), find

(a) \((f \circ g)(-5)\)
(b) \((g \circ f)(x)\)
(c) \((fg)(0)\)
(d) \((f + g)(0)\)

Answer.

(a) \(f(g(-5)) = f(6) = 2(6^2) + 7 = 72 + 7 = 79.\)

(b) \(g(f(x)) = |f(x) - 1| = |2x^2 + 7 - 1| = 2x^2 + 6\) (we can drop the absolute values because \(2x^2 + 6 \geq 0\) for all values of \(x\).)

(c) and (d): \(f(0) = 7\) and \(g(0) = 1\), therefore \((fg)(0) = 7(1) = 7\) and \((f + g)(0) = 7 + 1 = 8.\)
4. Let \(f(x) = 4x^2 - 3x \), find the difference quotient

\[
\frac{f(x + h) - f(x)}{h}
\]

Answer.

\[
\frac{f(x + h) - f(x)}{h} = \frac{4(x + h)^2 - 3(x + h) - (4x^2 - 3x)}{h}
\]

\[
= \frac{4x^2 + 8xh + 4h^2 - 3x - 3h - 4x^2 + 3x}{h}
\]

\[
= \frac{8xh + 4h^2 - 3h}{h}
\]

\[
= \frac{h(8x + 4h - 3)}{h}
\]

\[
= 8x + 4h - 3.
\]

5. Sketch the graph of \(f(x) = |x + 3| - 2 \) and find intervals where \(f \) is (a) increasing; (b) decreasing. Is \(f \) one-to-one?

Answer. Notice that the graph of \(f(x) \) is the graph of \(y = |x| \) shifted left 3 units, and down 2 units. Thus, \(f \) is decreasing on \((-\infty, -3]\) and increasing on \([-3, \infty)\). The sketch is left to the reader. Notice that \(f \) is not one-to-one because it fails the horizontal line test.

6. Determine the domains of the following functions.

(a) \(f(x) = \frac{x + 3}{(x + 2)\sqrt{16 - x^2}} \)

(b) \(g(x) = \sqrt{x - 4} \)

(c) \(h(x) = \sqrt{4 - x} \)

(d) \(k(x) = \frac{3(x - 1)}{(x + 2)(x - 11)} \)

Answer. (a) We need \(16 - x^2 > 0 \) and \(x + 2 \neq 0 \). Therefore, \(-4 < x < 4 \) and \(x \neq 2 \) which in interval form is \((-4, -2) \cup (-2, 4)\).

(b) \(x \geq 4 \); (c) \(x \leq 4 \) (d) \(x \neq -2, x \neq 11 \).
7. (a) Find the slope-intercept form of the line through the points \((-1, 3)\) and \((4, -7)\).

Answer. The slope is \(m = \frac{-7-3}{4-(-1)} = -2\). Using the point-slope form of a line, we get \(y - 3 = -2(x + 1)\) and so \(y = -2x + 1\) is the slope-intercept equation of the line. One should plug both points in to make sure they work.

(b) Find the slope-intercept form of the line that passes through the point \((-3, -7)\) and is perpendicular to the line \(2x + 5y = 10\).

Answer. First, the line \(2x + 5y = 10\) has slope \(m_1 = -\frac{2}{5}\). So the perpendicular line should have slope \(m_2 = -1/m_1 = \frac{5}{2}\). Thus the desired line has point-slope form \(y + 7 = \frac{5}{2}(x - (-3))\) which leads to the slope-intercept equation \(y = \frac{5}{2}x - \frac{41}{7}\).

(c) Find the slope-intercept form of the line that passes through the point \((-3, -7)\) and is parallel to the line \(2x + 5y = 10\).

Answer. From (b), we know the slope of the line is \(m = -\frac{2}{5}\), and so the parallel line has equation \(y - (-7) = -\frac{2}{5}(x - (-3))\) and so \(y = -\frac{2}{5}x - \frac{41}{7}\).

8. (a) Write the quadratic function \(f(x) = -3x^2 + 4x - 5\) in standard form by completing the square. Using that information, sketch the graph of \(f(x)\).

Answer. The completion of the square is \(f(x) = -3x^2 + 4x - 5\)
\[\begin{align*}
&= -3\left(x^2 - \frac{4}{3}x + \left(\frac{2}{3}\right)^2\right) - 5 + 3\left(\frac{2}{3}\right)^2 \\
&= -3\left(x - \frac{2}{3}\right)^2 - \frac{11}{3}.
\end{align*}\]
Thus the graph of \(f(x)\) is the graph of \(y = -3x^2\) shifted \(\frac{2}{3}\) units to the right, and \(\frac{11}{3}\) units down. See text or graphing utility for graph.

(b) Find the vertex of the quadratic function \(f(x) = 3x^2 - 6x + 11\), and find the range of \(f(x)\).

Answer. The vertex has \(x\)-coordinate \(-\frac{b}{2a}\), which is \(x = 1\), and so the \(y\)-coordinate of the vertex is \(f(1) = 3 - 6 + 11 = 8\). Thus the vertex is at \((1, 8)\), and the range of \(f\) is \([8, \infty)\) (the parabola opens upward so the vertex is at the minimum).

(c) Find the maximum of the quadratic function \(f(x) = -3x^2 + 3x + 7\) and then find its range.

Answer. The maximum occurs at the vertex which is at \(x = 1/2\). Thus the maximum is \(f(1/2) = -3/4 + 3/2 + 7 = 31/4\). The range is \((-\infty, 31/4]\).

(d) Find the range of the quadratic function \(f(x) = x^2 - 10x + 3\). Does this function have a maximum or a minimum? If so, find it.

Answer. This is a parabola opening up, so it has a minimum but no maximum. The minimum is at the vertex which is at \((5, f(5))\), i.e. \((5, -22)\). Thus the minimum is \(f(5) = -22\) and the range is \([-22, \infty)\).
9. An air freight company has determined that its cost of delivering \(x \) parcels per flight is
\[
C(x) = 875 + 0.75x
\]
and it charges $12.00 per parcel to send each parcel. Find:

(a) the revenue function;

Answer. \(R(x) = 12x \).

(b) the profit function;

Answer. \(P(x) = 12x - (0.75x + 875) = 11.25x - 875 \).

(c) the minimum number of parcels the company must ship on a flight to break even.

Answer. Solve \(P(x) \geq 0 \), i.e., \(11.25x - 875 \geq 0 \) implies \(x \geq \frac{875}{11.25} \approx 77.8 \). Thus the company must ship at least 78 parcels to break even or make a profit.

10. The height in feet of a projectile with an initial velocity of 64 feet per second and an initial height of 80 feet is a function of time \(t \) in seconds, given by
\[
h(t) = -16t^2 + 64t + 80.
\]

(a) Find the maximum height of the projectile.

Answer. Using the answer in (b), we compute \(h(2) = -64 + 128 + 80 = 144 \) feet.

(b) Find the time \(t \) when the projectile reaches its maximum height.

Answer. The maximum height occurs at \(t = \frac{-64}{2(-16)} = 2 \); that is 2 seconds into its flight.

(c) Find the time \(t \) when the projectile hits the ground (has a height of 0 feet).

Answer. \(h(t) = 0 \) implies \(-16(t^2 - 4t - 5) = 0 \), and so \((t - 5)(t + 1) = 0 \). Therefore, the projectile lands after 5 seconds.

(d) The difference quotient \(\frac{h(1.01) - h(0.99)}{1.01 - 0.99} \) gives the average velocity of the projectile for \(.99 \leq t \leq 1.01 \). Compute this difference quotient. Do you think it would provide a good estimate of the instantaneous velocity of the projectile when \(t = 1 \)?

Answer. Using a calculator, \(\frac{h(1.01) - h(0.99)}{1.01 - 0.99} = 32 \) feet/second. It should be a good estimate, because the average velocity of a very small time interval should be close to the instantaneous velocity at the time in the midpoint of the interval.
11. (a) Determine whether the function \(f(x) = x^4 - 3x^2 + 10 \) is even, odd, or neither. What about the function \(h(x) = -3x^5 - 7x + 1 \)?

Answer. \(f \) is even because \(f(-x) = (-x)^4 - 3(-x)^2 + 10 = x^4 - 3x^2 + 10 = f(x) \). However, \(h \) is neither even nor odd because \(h(-x) \neq h(x) \) and \(h(-x) \neq -h(x) \).

(b) Determine whether the graph of \(y = x^3 - 4x \) is symmetric about the (i) \(x \)-axis, (ii) \(y \)-axis, (iii) origin.

Answer. Symmetric to the origin since the equation is unchanged if \(x \) is replaced with \(-x\) and \(y \) is replaced with \(-y\). Please check this.

(c) Determine whether the function \(g(x) = x^5 - x^3 \) is even, odd or neither.

Answer. Odd, because \(g(-x) = -x^5 + x^3 = -(x^5 - x^3) = -g(x) \).

(d) In terms of shifts or translations, how does the graph of \(y = f(x + 5) - 10 \) compare to the graph of \(y = f(x) \)?

Answer. The graph of \(y = f(x + 5) - 10 \) is the graph of \(y = f(x) \) shifted 5 units to the left, and 10 units down.

(e) In terms of shifts or translations, how does the graph of \(y = f(x + 5) - 10 \) compare to the graph of \(y = f(x - 3) + 2 \)?

Answer. Shift the graph of \(y = f(x - 3) + 2 \) to the left 8 units and down 12 units to get the graph of \(y = f(x + 5) - 10 \).

12. Find two numbers whose difference is 10 and the sum of whose squares is a minimum.

Answer. Let the two numbers be \(x \) and \(y \). Then \(y - x = 10 \) and so \(y = x + 10 \). Now we minimize \(x^2 + y^2 = x^2 + (x + 10)^2 \). In other word, we minimize the quadratic function \(f(x) = 2x^2 + 20x + 100 \). The minimum occurs when \(x = -\frac{b}{2a} = -\frac{20}{4} = -5 \). Thus \(x = -5 \) and \(y = -5 + 10 = 5 \). So the two numbers are \(-5\) and \(5\), and the sum of their squares is 50.

13. Let \(f(x) = \sqrt{5 - x} \) and \(g(x) = \sqrt{x + 7} \). Find the domain of (i) \(f + g \), (ii) \(f - g \), (iii) \(fg \), (iv) \(f/g \).

Answer. Remember, the domains of \(f + g \), \(f - g \) and \(fg \) are all the same, and they are the intersection of the domains of \(f \) and \(g \). The domain of \(f \) is \((-\infty, 5]\) and the domain of \(g \) is \([-7, \infty)\). The intersection of these domains is \([-7, 5]\) which is the answer for (i), (ii), and (iii).

For (iv), the domain is all \(x \in [-7, 5] \) such that \(g(x) \neq 0 \). Now \(g(x) = 0 \) if \(x = -7 \). Therefore, the domain of \(f/g \) is \((-7, 5]\).
14. A farmer has $1000 to spend to fence a rectangular corral. Because extra reinforcement is needed on one side, the corral costs $6 per foot along that side. It costs $2 per foot to fence the remaining sides. What dimensions of the corral will maximize the area of the corral?

Answer. Let the dimensions be \(x \) and \(y \), with the \(y \) being the length of the expensive side. Then \(2x + 2x + 2y + 6y = 1000 \). Therefore, \(4x + 8y = 1000 \) and so \(x = 250 - 2y \). Now we maximize the area \(xy = y(250 - 2y) \). So we maximize the quadratic function \(f(y) = -2y^2 + 250y \). This maximum occurs when \(y = \frac{-250}{-4} = 62.5 \) feet and so \(x = 250 - 125 = 125 \) feet. Thus the dimensions are 62.5 feet by 125 feet, where the expensive side is 62.5 feet long.

15. A Hollywood charter bus company that provides tours through the movie star neighborhoods in Beverly Hills has determined that the cost of providing \(x \) people a tour is

\[
C(x) = 180 + 2.50x
\]

A full tour consists of 60 people. The ticket price per person is $15 plus $0.25 for each unsold ticket. Determine

(a) The revenue function.

(b) The profit function.

(c) The company’s maximum profit.

(d) The number of ticket sales that yields the maximum profit.

Answer.

(a) \(R(x) = x(15 + .25(60 - x)) = -.25x^2 + 30x \).

(b) \(P(x) = R(x) - C(x) = -.25x^2 + 27.5x - 180 \).

(d) The number of tickets is \(-27.5/(2(-.25)) = 55 \).

(c) The maximum profit is \(P(55) = -.25(55^2) + 27.5(55) - 180 = 576.25 \).

16. Answer the following in terms of shifts, reflections, stretching or shrinking.

(a) How does the graph of \(y = f(-x) \) relate to the graph of \(y = f(x) \)?

(b) How does the graph of \(y = -f(x) \) relate to the graph of \(y = f(x) \)?

(c) How does the graph of \(y = -f(x + 2) \) relate to the graph of \(y = f(x) \)?

(d) How does the graph of \(y = f(5x) \) relate to the graph of \(y = f(x) \)?

(e) How does the graph of \(y = f(\frac{1}{12}x) \) relate to the graph \(y = f(x) \)?

(f) How does the graph of \(y = 10f(x) \) relate to the graph of \(y = f(x) \)?

Answer.

(a) It is a reflection about \(y \)-axis. (b) It is a reflection about \(x \)-axis. (c) Shift graph of \(f \) two units left and then reflect about \(x \)-axis. (d) Horizontally compressed by factor of 1/5 towards \(y \)-axis. (e) Stretched horizontally by factor of 12 away from the \(y \)-axis. (f) Vertically stretched by factor of 10 away from the \(x \)-axis.
17. (a) The function \(I(x) = 12x \) converts feet to inches and the function \(F(x) = 5280x \)
converts miles to feet. Compute \((I \circ F)(x)\) and explain its meaning.
(b) Let \(f(x) = x^2 + 4x - 1 \) and \(g(x) = x + 2 \). Find \(f \circ g \) and \(g \circ f \).
(c) Let \(f(x) = x^2 + 1 \) and \(g(x) = \sqrt{x - 1} \). Compute \(f \circ g \) and \(g \circ f \). What are their domains?
Are \(f \circ g \) and \(g \circ f \) equal?

Answer. (a) \((I \circ F)(x) = I(F(x)) = I(5280x) = 12(5280x) = 63360x\). Converts miles to inches.
(b) \((f \circ g)(x) = f(g(x)) = (x + 2)^2 + 4(x + 2) - 1 = x^2 + 4x + 4 + 4x + 8 - 1 = x^2 + 8x + 11\). On the other hand, \((g \circ f)(x) = (x^2 + 4x - 1) + 2 = x^2 + 4x + 1\).
(c) \((f \circ g)(x) = (\sqrt{x - 1})^2 + 1 \) (note: domain is \(x \geq 1 \)) and so \((f \circ g)(x) = x - 1 + 1 = x\) for \(x \geq 1 \). On the other hand, \((g \circ f)(x) = \sqrt{x^2 + 1 - 1} = \sqrt{x^2} = |x|\) and the domain is \((-\infty, \infty)\).

18. Julie opened a lemonade stand and found that daily her profit is a linear function of the number of cups of lemonade sold. When she sells 300 cups of lemonade, she makes $40 and when she sells 600 cups of lemonade, she makes $130.

(a) Find the profit function.
(b) How many cups of lemonade does Julie need to sell to break even on a given day?
(c) How many cups of lemonade does Julie need to sell to make $100 in a day?
(d) How much would she make on a day when she sells 1000 cups of lemonade?

Answer. (a) Let \(x \) be the number of cups sold, then \(P(x) = mx + b \) where \(m = \frac{130 - 40}{600 - 300} = \frac{90}{300} = 0.3 \).
Thus \(P(x) = .3x + b \), and so \(40 = .3(300) + b \) which means \(b = -50 \). Hence \(P(x) = .3x - 50 \).
(b) To break even, she must have \(.3x - 50 = 0\), and so \(x = 50/.3 = 166.67 \). That is, she must sell 167 cups of lemonade.
(c) To make $100, we solve \(.3x - 50 = 100\), and so \(x = 150/.3 = 500 \) cups.
(d) She will make \(P(1000) = .3(1000) - 50 = 250 \) dollars.
19. (a) and (d) are even because of symmetry about the y-axis.
(e) and (f) are odd because of symmetry about the origin.
(b) and (c) are neither even nor odd, because they are not symmetric about the y-axis or origin.

20. (a) (b) (c) (d)
23. In the graph below, the blue graph is a graph of the function \(f(x) = (x + 2)^2(x - 1) \). Find the equation for the green graph.

Answer. The green graph is a result of shifting the blue graph 3 units up and 2 units to the left. Therefore, the green graph has equation \(g(x) = f(x+2)+3 \), or \(g(x) = (x+2+2)^2(x-1+2)+3 \) and so \(g(x) = (x + 4)^2(x + 1) + 3 \)

24.
25. (a) (b) (c) (d)

26. (a) (b) (c) (d)
27. (a)

28. (a)
29. (a) \(y = |x + 2| + 3 \) because the graph of \(y = |x| \) is shifted 2 units to the left and 3 units up.

(b) \(y = |x + 2| - 3 \) because the graph of \(y = |x| \) is shifted 2 units to the left and 3 units down.

(c) \(y = |x - 2| + 3 \) because the graph of \(y = |x| \) is shifted 2 units to the right and 3 units up.

(d) \(y = |x - 2| - 3 \) because the graph of \(y = |x| \) is shifted 2 units to the right and 3 units down.

(e) \(y = -|x - 2| + 3 \) because the graph of \(y = |x| \) is reflected over the \(x \)-axis and then shifted 2 units to the right and 3 units up.

(f) \(y = -|x - 2| \) because the graph of \(y = |x| \) is reflected over the \(x \)-axis and shifted 2 units to the right.

(g) \(y = -|x + 4| + 3 \) because the graph of \(y = |x| \) is reflected over the \(x \)-axis and shifted 4 units to the left and then 3 units up.

(h) \(y = -|x + 4| - 1 \) because the graph of \(y = |x| \) is reflected over the \(x \)-axis and shifted 4 units to the left and then 1 unit down.